AN EXPERIMENTAL EVALUATION OF CUTTING TEMPERATURES DURING HIGH SPEED MACHINING OF HARDENED D2 TOOL STEEL

2002 ◽  
Vol 6 (1) ◽  
pp. 67-79 ◽  
Author(s):  
H. A. Kishawy
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Vincent A Balogun ◽  
Isuamfon F Edem ◽  
Etimbuk B Bassey

The use of electrical energy and coolants/lubricants has been widely reported in mechanical machining. However, increased research and process innovation in high speed machining has brought about optimised manufacturing cycle times. This has promoted dry machining and the use of minimum quantity lubrication (MQL). This work understudies the impact of different cutting environments in machining H13 tool steel alloys at transition speed regime with emphasis on sustainable machining of the alloy. To achieve this, end milling tests were performed on AISI H13 steel alloy (192 BHN) on a MIKRON HSM 400 high speed machining centre using milling inserts. After each cutting pass, the milling insert was removed for tool wear measurement on the digital microscope. The electrical power consumed was measured with the Fluke 435 power clamp meter mounted on the three phase cable at the back of the machine. It was discovered that MQL has a promising advantage in terms of tool life with 25 minutes of machining, net power requirement of 10% when compared to dry cutting, and environmental benefits when machining H13 tool steel alloy. This work is fundamentally important in assessing the environmental credentials and resource efficiency regime for green machining of H13 tool steel alloysKeywords— H13 tool steel, green machining, process optimization, tool life, cutting environments, energy consumption 


Author(s):  
Tsvetan Kaldashev ◽  
Petar Hadzhiyski ◽  
Galina Nikolcheva

This report examined tool wear in high-speed machining of tool steel with a hardness of HRC 63. Wear monitored periodically using the device for automatic geometric correction tool (length and radius) situated in the working area of the machine. The study was conducted on milling machine RAIS M400 with CNC Heidenhain iTNC 530i.


Author(s):  
N. M. Vaxevanidis ◽  
N. I. Galanis ◽  
G. P. Petropoulos ◽  
N. Karalis ◽  
P. Vasilakakos ◽  
...  

High-speed machining is widely applied for the processing of lightweight materials and also structural and tool steels. These materials are intensively used in the aerospace and the automotive industries. The advantages of high-speed machining lie not only in the speed of machining (lower costs and higher productivity) but also in attaining higher surface quality (prescribed surface roughness without surface defects). Based on this concept, in the present paper the high speed-dry turning of AISI O, (manganese-chromium-tungsten / W.-Nr. 1.2510) tool-steel specimens is reported. The influence of the main machining parameters i.e., cutting speed, feed rate and depth of cut on the resulted center-line average surface roughness (Ra) is examined. Types of wear phenomena occurred during the course of the present experimental study as well as tool wear patterns were also monitored.


2021 ◽  
pp. 100207
Author(s):  
R.F. Santos ◽  
A.R. Farinha ◽  
R. Rocha ◽  
C. Batista ◽  
M.T. Vieira

2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-541-Pr9-546 ◽  
Author(s):  
A. Molinari ◽  
M. Nouari

1995 ◽  
Vol 81 (9) ◽  
pp. 912-917 ◽  
Author(s):  
Keisaku OGI ◽  
Yukinori ONO ◽  
Hong ZHOU ◽  
Hirofumi MIYAHARA
Keyword(s):  

Alloy Digest ◽  
1982 ◽  
Vol 31 (11) ◽  

Abstract ANACONDA Alloy 360 is a leaded brass and is the alloy most often used for high-speed machining operations; it fills most of the needs for such purposes. Alloy 360 is the standard free-cutting brass and its machinability has become the standard by which all other copper-base alloys are rated. It has medium strength and ductility. Alloy 360 is used for hardware such as gears and pinions where excellent machinability is of prime importance and for all types of automatic high-speed screw-machine products. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-447. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS T12001 is a general-purpose, tungsten, high-speed steel containing nominally 18% tungsten, 4% chromium and 1% vanadium. It is suitable for practically all high-speed applications. This steel has been the standard of the industry for many years because of its cutting ability, ease of heat treatment and minimum tendency to decarburize. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-495. Producer or source: Tool steel mills.


Sign in / Sign up

Export Citation Format

Share Document