scholarly journals Numerical simulation of electromechanical coupling properties of three-dimensional braiding piezoelectric composite actuator

2021 ◽  
pp. 104056
Author(s):  
Xiaoqing Sun ◽  
Jinwei Qiao ◽  
Gaofeng Wei ◽  
Hui Zhang
2020 ◽  
Vol 31 (18) ◽  
pp. 2165-2176
Author(s):  
Bo Zhou ◽  
Xiao Ma ◽  
Shuai Wang ◽  
Shifeng Xue

Piezoelectric ceramics are a very popular material in the field of actuator technology due to their unique piezoelectric properties. However, the brittle behavior of ceramics endangers the reliability of piezoelectric actuators. In this article, the three-dimensional braided piezoelectric composite is utilized to ameliorate the reliability and driving capability of piezoelectric actuators. The static analysis of laminated beam with the distributed braided piezoelectric composite actuator is presented to study its driving capability. Based on the piezoelectric constitutive equations and Euler–Bernoulli beam theory, the governing equation of the piezoelectric laminated beam is derived. The least-squares method for the piezoelectric laminated beam is established to solve the derived governing equation. The current approach is validated by comparison with published results and finite element results. In the numerical examples, the effects of the number and spacing of the three-dimensional braided piezoelectric composite patches, actuator central location, actuator length, actuator thickness ratio, cantilever beam thickness, applied voltage and fiber volume fraction on the driving capability of the distributed braided piezoelectric composite actuator are investigated. This study suggests the potential use of the distributed braided piezoelectric composite actuator in intelligent structures and provides useful guidance for the design and optimization of piezoelectric actuators.


1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


2021 ◽  
Vol 233 ◽  
pp. 109174
Author(s):  
Jinzhao Li ◽  
David R. Fuhrman ◽  
Xuan Kong ◽  
Mingxiao Xie ◽  
Yilin Yang

2020 ◽  
Vol 12 (1) ◽  
pp. 703-717
Author(s):  
Yin Wei ◽  
Wang Jiaqi ◽  
Bai Xiaomin ◽  
Sun Wenjie ◽  
Zhou Zheyuan

AbstractThis article analyzes the technical difficulties in full-section backfill mining and briefly introduces the technical principle and advantages of backfilling combined with caving fully mechanized mining (BCCFM). To reveal the strata behavior law of the BCCFM workface, this work establishes a three-dimensional numerical model and designs a simulation method by dynamically updating the modulus parameter of the filling body. By the analysis of numerical simulation, the following conclusions about strata behavior of the BCCFM workface were drawn. (1) The strata behavior of the BCCFM workface shows significant nonsymmetrical characteristics, and the pressure in the caving section is higher than that in the backfilling section. φ has the greatest influence on the backfilling section and the least influence on the caving section. C has a significant influence on the range of abutment pressure in the backfilling section. (2) There exits the transition area with strong mine pressure of the BCCFM workface. φ and C have significant effect on the degree of pressure concentration but little effect on the influence range of strong mine pressure in the transition area. (3) Under different conditions, the influence range of strong mine pressure is all less than 6 m. This article puts forward a control strategy of mine pressure in the transition area, which is appropriately improving the strength of the transition hydraulic support within the influence range (6 m) in the transition area according to the pressure concentration coefficient. The field measurement value of Ji15-31010 workface was consistent with numerical simulation, which verifies the reliability of control strategy of the BCCFM workface.


Sign in / Sign up

Export Citation Format

Share Document