scholarly journals A multifunctional and multiscale device of magnetic-controlled AND logical operation and detection based on the nonreciprocity of the magnetized InSb photonic structure

2021 ◽  
Vol 31 ◽  
pp. 105058
Author(s):  
Si-Si Rao ◽  
Jia-Tao Zhang ◽  
Hai-Feng Zhang
Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 250
Author(s):  
Vakhtang Jandieri ◽  
Ramaz Khomeriki ◽  
Tornike Onoprishvili ◽  
Daniel Erni ◽  
Levan Chotorlishvili ◽  
...  

This review paper summarizes our previous findings regarding propagation characteristics of band-gap temporal solitons in photonic crystal waveguides with Kerr-type nonlinearity and a realization of functional and easily scalable all-optical NOT, AND and NAND logic gates. The proposed structure consists of a planar air-hole type photonic crystal in crystalline silicon as the nonlinear background material. A main advantage of proposing the gap-soliton as a signal carrier is that, by operating in the true time-domain, the temporal soliton maintains a stable pulse envelope during each logical operation. Hence, multiple concatenated all-optical logic gates can be easily realized paving the way to multiple-input ultrafast full-optical digital signal processing. In the suggested setup, due to the gap-soliton features, there is no need to amplify the output signal after each operation which can be directly used as a new input signal for another logical operation. The efficiency of the proposed logic gates as well as their scalability is validated using our original rigorous theoretical formalism confirmed by full-wave computational electromagnetics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Miguel Camacho ◽  
Brian Edwards ◽  
Nader Engheta

AbstractIn the search for improved computational capabilities, conventional microelectronic computers are facing various problems arising from the miniaturization and concentration of active electronics. Therefore, researchers have explored wave systems, such as photonic or quantum devices, for solving mathematical problems at higher speeds and larger capacities. However, previous devices have not fully exploited the linearity of the wave equation, which as we show here, allows for the simultaneous parallel solution of several independent mathematical problems within the same device. Here we demonstrate that a transmissive cavity filled with a judiciously tailored dielectric distribution and embedded in a multi-frequency feedback loop can calculate the solutions of a number of mathematical problems simultaneously. We design, build, and test a computing structure at microwave frequencies that solves two independent integral equations with any two arbitrary inputs and also provide numerical results for the calculation of the inverse of four 5 x 5 matrices.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sebastien Boissier ◽  
Ross C. Schofield ◽  
Lin Jin ◽  
Anna Ovvyan ◽  
Salahuddin Nur ◽  
...  

AbstractExtinction spectroscopy is a powerful tool for demonstrating the coupling of a single quantum emitter to a photonic structure. However, it can be challenging in all but the simplest of geometries to deduce an accurate value of the coupling efficiency from the measured spectrum. Here we develop a theoretical framework to deduce the coupling efficiency from the measured transmission and reflection spectra without precise knowledge of the photonic environment. We then consider the case of a waveguide interrupted by a transverse cut in which an emitter is placed. We apply that theory to a silicon nitride waveguide interrupted by a gap filled with anthracene that is doped with dibenzoterrylene molecules. We describe the fabrication of these devices, and experimentally characterise the waveguide coupling of a single molecule in the gap.


Optik ◽  
2021 ◽  
pp. 166756
Author(s):  
Francis Segovia-Chaves ◽  
Herbert Vinck-Posada ◽  
Vigneswaran Dhasarathan

Optik ◽  
2019 ◽  
Vol 179 ◽  
pp. 740-743 ◽  
Author(s):  
G. Palai ◽  
Anand Nayyar ◽  
R. Manikandan ◽  
Bhopendra Singh

2014 ◽  
Vol 26 (29) ◽  
pp. 4919-4919 ◽  
Author(s):  
Yoshiaki Uchida ◽  
Yoichi Takanishi ◽  
Jun Yamamoto

Sign in / Sign up

Export Citation Format

Share Document