Assessment of MODIS imagery to track light-use efficiency in a water-limited Mediterranean pine forest

2012 ◽  
Vol 123 ◽  
pp. 359-367 ◽  
Author(s):  
A. Moreno ◽  
F. Maselli ◽  
M.A. Gilabert ◽  
M. Chiesi ◽  
B. Martínez ◽  
...  
2012 ◽  
Vol 118 ◽  
pp. 60-72 ◽  
Author(s):  
Chaoyang Wu ◽  
Jing M. Chen ◽  
Ankur R. Desai ◽  
David Y. Hollinger ◽  
M. Altaf Arain ◽  
...  

2010 ◽  
Vol 50 (6) ◽  
pp. 611 ◽  
Author(s):  
G. E. Donald ◽  
S. G. Gherardi ◽  
A. Edirisinghe ◽  
S. P. Gittins ◽  
D. A. Henry ◽  
...  

Remote sensing of vegetation and its monitoring using the normalised difference vegetation index (NDVI) offers the opportunity to provide a coverage of agricultural land at a large scale. The availability of MODIS NDVI at a resolution of 250 m provided the opportunity to evaluate the hypothesis that pasture growth rate (PGR) of individual paddocks can be accurately predicted using a model based on MODIS NDVI in combination with climate and soil data and a light-use efficiency model. Model estimates of PGR were compared with field measurements of PGR recorded in grazing enclosure cages collected over 3 years from six farms located across the south-west region of Western Australia. The estimates attained from the model explained 70% of the variation in PGR for individual paddocks on farms over the 3 years of the study, with an average error at the paddock scale of 10.4 kg DM/ha.day over all growing seasons and years. Across all farms studied, there was generally good agreement between satellite-derived PGR and ground-based measurements, although estimates of PGR varied between years and farms. The model explained 47% of the variation in pasture growth early in the season (from break of season to end of July), compared with 62% late in the season (from August to pasture senescence). The present study demonstrated that PGR for individual paddocks can be predicted at weekly intervals from MODIS imagery, climate and soil data and a light-use efficiency model at an accuracy sufficient to facilitate on-farm pasture and livestock management.


2021 ◽  
Author(s):  
Laura J. Williams ◽  
Ethan E. Butler ◽  
Jeannine Cavender‐Bares ◽  
Artur Stefanski ◽  
Karen E. Rice ◽  
...  

2018 ◽  
Vol 425 ◽  
pp. 35-44 ◽  
Author(s):  
Timothy J. Albaugh ◽  
Thomas R. Fox ◽  
Chris A. Maier ◽  
Otávio C. Campoe ◽  
Rafael A. Rubilar ◽  
...  

2021 ◽  
Author(s):  
David Sandoval ◽  
Iain Colin Prentice

<p>The emergent spatial organization of ecosystems in elevational gradients suggest that some ecosystem processes, important enough to shape morphological traits, must show similar patterns.</p><p>The most important of these processes, gross primary production (GPP), usually (albeit with some exceptions) decreases with elevation. This was previously thought to be a direct consequence either of the decrease in temperature, or the decrease of incident light due to cloud cover. However, some recent developments in photosynthetic theory, plus the unprecedented availability of ecophysiological data, support the hypothesis that plants acclimate (optimize) their photosynthetic traits to the environment. In this new theoretical context, the temperature is no longer considered as a major constraining factor, except when either freezing or excessively high temperatures inhibit plant function generally.</p><p>Two of the most important photosynthetic traits, the maximum rate of carboxylation (V<sub>CMAX</sub>) and the intrinsic quantum efficiency (φ<sub>o</sub>), vary in opposite directions with increasing elevation. Plants tend to increase V<sub>CMAX</sub> to compensate for a decrease in the ratio leaf-internal to ambient partial pressures of CO<sub>2</sub>, while φ<sub>o</sub> increases with temperature up to a plateau. To explore how these different responses, documented at leaf level, converge in emergent spatial patterns at ecosystem scale we considered how elevation shape light use efficiency (defined as the ratio of CO<sub>2</sub> assimilated over light absorbed) over mountain regions worldwide. We used data from eddy-covariance flux towers, from different networks, located in mountain regions around the world, adding up to 618 station-years of record. To complement our analysis, we included theoretical predictions using an optimality model (P-model) and evaluated changes in the spatial pattern with simulation experiments.</p><p>Empirically we found an asymptotic response of LUE to the average daytime temperature during the growing season with increasing elevation, and a small, but globally consistent effect of elevation on LUE. We propose a theoretical explanation for the observation that temperature differences have little impact on the biogeographical pattern of LUE, but we also find that different assumptions on the acclimation of the maximum rate of electron transport (J<sub>MAX</sub>) and φ<sub>o</sub> change this pattern.</p>


HortScience ◽  
2018 ◽  
Vol 53 (10) ◽  
pp. 1416-1422 ◽  
Author(s):  
Giverson Mupambi ◽  
Stefano Musacchi ◽  
Sara Serra ◽  
Lee A. Kalcsits ◽  
Desmond R. Layne ◽  
...  

Globally, apple production often occurs in semiarid climates characterized by high summer temperatures and solar radiation. Heat stress events occur regularly during the growing season in these regions. For example, in the semiarid eastern half of Washington State, historic weather data show that, on average, 33% of the days during the growing season exceed 30 °C. To mediate some of the effects of heat stress, protective netting (PN) can be used to reduce the occurrence of fruit sunburn. However, the impacts of reduced solar radiation in a high light environment on light-use efficiency and photosynthesis are poorly understood. We sought to understand the ecophysiological response of apple (Malus domestica Borkh. cv. Honeycrisp) under blue photoselective PN during days with low (26.6 °C), moderate (33.7 °C), or high (38.1 °C) ambient temperatures. Two treatments were evaluated; an uncovered control and blue photoselective PN. Maximum photochemical efficiency of PSII, or photosystem II (Fv/Fm) was significantly greater at all measurement times under blue photoselective PN compared with the control on days with high ambient temperatures. Fv/Fm dropped below 0.79, which is considered the threshold for stress, at 1000 hr in the control and at 1200 hr under blue photoselective PN on a day with high ambient temperature. On days with low or moderate ambient temperatures, Fv/Fm was significantly greater under blue photoselective PN at 1400 hr, which coincided with the peak in solar radiation. ‘Honeycrisp’ apple exhibited dynamic photoinhibition as shown by the diurnal decline in Fv/Fm. Quantum photosynthetic yield of PSII (ΦPSII) was also generally greater under blue photoselective PN compared with the control for days with moderate or high ambient temperatures. Photochemical reflectance index (ΔPRI), the difference in reflectance between a stress-responsive and nonstress-responsive wavelength, was greater under PN compared with the control on the day with high ambient temperatures, with no differences observed under low or moderate ambient temperatures. Leaf gas exchange did not show noticeable improvement under blue photoselective netting when compared with the control despite the improvement in leaf-level photosynthetic light use efficiency. In conclusion, PN reduced incoming solar radiation, improved leaf-level photosynthetic light use efficiency, and reduced the symptoms of photoinhibition in a high-light, arid environment.


Sign in / Sign up

Export Citation Format

Share Document