scholarly journals Impacts of disturbance history on forest carbon stocks and fluxes: Merging satellite disturbance mapping with forest inventory data in a carbon cycle model framework

2014 ◽  
Vol 151 ◽  
pp. 57-71 ◽  
Author(s):  
Christopher A. Williams ◽  
G. James Collatz ◽  
Jeffrey Masek ◽  
Chengquan Huang ◽  
Samuel N. Goward
2016 ◽  
Vol 13 (22) ◽  
pp. 6321-6337 ◽  
Author(s):  
Huan Gu ◽  
Christopher A. Williams ◽  
Bardan Ghimire ◽  
Feng Zhao ◽  
Chengquan Huang

Abstract. Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbances have highly diverse impacts on forest carbon dynamics, making them a challenge to quantify and report. Time since disturbance is a key intermediate determinant that aids the assessment of disturbance-driven carbon emissions and removals legacies. We propose a new methodology of quantifying time since disturbance and carbon flux across forested landscapes in the Pacific Northwest (PNW) at a fine scale (30 m) by combining remote sensing (RS)-based disturbance year, disturbance type, and above-ground biomass with forest inventory data. When a recent disturbance is detected, time since disturbance can be directly determined by combining three RS-derived disturbance products, or time since the last stand clearing can be inferred from a RS-derived 30 m biomass map and field inventory-derived species-specific biomass accumulation curves. Net ecosystem productivity (NEP) is further mapped based on carbon stock and flux trajectories derived from the Carnegie-Ames-Stanford Approach (CASA) model in our prior work that described how NEP changes with time following harvest, fire, or bark beetle disturbances of varying severity. Uncertainties from biomass map and forest inventory data were propagated by probabilistic sampling to provide a statistical distribution of stand age and NEP for each forest pixel. We mapped mean, standard deviation, and statistical distribution of stand age and NEP at 30 m in the PNW region. Our map indicated a net ecosystem productivity of 5.9 Tg C yr−1 for forestlands circa 2010 in the study area, with net uptake in relatively mature (> 24 years old) forests (13.6 Tg C yr−1) overwhelming net negative NEP from tracts that had recent harvests (−6.4 Tg C yr−1), fires (−0.5 Tg C yr−1), and bark beetle outbreaks (−0.8 Tg C yr−1). The approach will be applied to forestlands in other regions of the conterminous US to advance a more comprehensive monitoring, mapping, and reporting of the carbon consequences of forest change across the US.


2013 ◽  
Vol 9 (4) ◽  
pp. 20130301 ◽  
Author(s):  
Sandra M. Durán ◽  
Ernesto Gianoli

Tropical forests are experiencing structural changes that may reduce carbon storage potential. The recent increase in liana abundance and biomass is one such potential change. Lianas account for approximately 25 per cent of woody stems and may have a strong impact on tree dynamics because severe liana infestation reduces tree growth and increases tree mortality. Based on forest inventory data from 0.1 ha plots, we evaluated the association between above-ground carbon stocks and liana abundance in 145 tropical forests worldwide. Liana abundance was negatively associated with carbon stocks of large trees (greater than 10 cm diameter), while it was not related to small trees (10 cm diameter or less). Results suggest that liana abundance may have pervasive effects on carbon stocks in tropical forests, as large trees store about 90 per cent of total forest carbon. We stress the need to include liana abundance in carbon stocks estimates, as this can enhance the accuracy of predictions of global changes in tropical forests.


Tellus B ◽  
2010 ◽  
Vol 62 (5) ◽  
Author(s):  
Victor Brovkin ◽  
Stephan J. Lorenz ◽  
Johann Jungclaus ◽  
Thomas Raddatz ◽  
Claudia Timmreck ◽  
...  

2012 ◽  
Vol 14 (3) ◽  
pp. 320-326
Author(s):  
Nan WU ◽  
Honglin HE ◽  
Li ZHANG ◽  
Xiaoli REN ◽  
Yuanchun ZHOU ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 555
Author(s):  
Thomas C. Goff ◽  
Mark D. Nelson ◽  
Greg C. Liknes ◽  
Tivon E. Feeley ◽  
Scott A. Pugh ◽  
...  

A need to quantify the impact of a particular wind disturbance on forest resources may require rapid yet reliable estimates of damage. We present an approach for combining pre-disturbance forest inventory data with post-disturbance aerial survey data to produce design-based estimates of affected forest area and number and volume of trees damaged or killed. The approach borrows strength from an indirect estimator to adjust estimates from a direct estimator when post-disturbance remeasurement data are unavailable. We demonstrate this approach with an example application from a recent windstorm, known as the 2020 Midwest Derecho, which struck Iowa, USA, and adjacent states on 10–11 August 2020, delivering catastrophic damage to structures, crops, and trees. We estimate that 2.67 million trees and 1.67 million m3 of sound bole volume were damaged or killed on 23 thousand ha of Iowa forest land affected by the 2020 derecho. Damage rates for volume were slightly higher than for number of trees, and damage on live trees due to stem breakage was more prevalent than branch breakage, both likely due to higher damage probability in the dominant canopy of larger trees. The absence of post-storm observations in the damage zone limited direct estimation of storm impacts. Further analysis of forest inventory data will improve understanding of tree damage susceptibility under varying levels of storm severity. We recommend approaches for improving estimates, including increasing spatial or temporal extents of reference data used for indirect estimation, and incorporating ancillary satellite image-based products.


Sign in / Sign up

Export Citation Format

Share Document