scholarly journals Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets

2016 ◽  
Vol 177 ◽  
pp. 107-124 ◽  
Author(s):  
F. Mélin ◽  
G. Sclep ◽  
T. Jackson ◽  
S. Sathyendranath
2018 ◽  
Vol 8 (12) ◽  
pp. 2684 ◽  
Author(s):  
Michael Twardowski ◽  
Alberto Tonizzo

An analytical radiative transfer (RT) model for remote sensing reflectance that includes the bidirectional reflectance distribution function (BRDF) is described. The model, called ZTT (Zaneveld-Twardowski-Tonizzo), is based on the restatement of the RT equation by Zaneveld (1995) in terms of light field shape factors. Besides remote sensing geometry considerations (solar zenith angle, viewing angle, and relative azimuth), the inputs are Inherent Optical Properties (IOPs) absorption a and backscattering bb coefficients, the shape of the particulate volume scattering function (VSF) in the backward direction, and the particulate backscattering ratio. Model performance (absolute error) is equivalent to full RT simulations for available high quality validation data sets, indicating almost all residual errors are inherent to the data sets themselves, i.e., from the measurements of IOPs and radiometry used as model input and in match up assessments, respectively. Best performance was observed when a constant backward phase function shape based on the findings of Sullivan and Twardowski (2009) was assumed in the model. Critically, using a constant phase function in the backward direction eliminates a key unknown, providing a path toward inversion to solve for a and bb. Performance degraded when using other phase function shapes. With available data sets, the model shows stronger performance than current state-of-the-art look-up table (LUT) based BRDF models used to normalize reflectance data, formulated on simpler first order RT approximations between rrs and bb/a or bb/(a + bb) (Morel et al., 2002; Lee et al., 2011). Stronger performance of ZTT relative to LUT-based models is attributed to using a more representative phase function shape, as well as the additional degrees of freedom achieved with several physically meaningful terms in the model. Since the model is fully described with analytical expressions, errors for terms can be individually assessed, and refinements can be readily made without carrying out the gamut of full RT computations required for LUT-based models. The ZTT model is invertible to solve for a and bb from remote sensing reflectance, and inversion approaches are being pursued in ongoing work. The focus here is with development and testing of the in-water forward model, but current ocean color remote sensing approaches to cope with an air-sea interface and atmospheric effects would appear to be transferable. In summary, this new analytical model shows good potential for future ocean color inversion with low bias, well-constrained uncertainties (including the VSF), and explicit terms that can be readily tuned. Emphasis is put on application to the future NASA Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) mission.


2016 ◽  
Vol 33 (11) ◽  
pp. 2331-2352 ◽  
Author(s):  
Gregory P. Gerbi ◽  
Emmanuel Boss ◽  
P. Jeremy Werdell ◽  
Christopher W. Proctor ◽  
Nils Haëntjens ◽  
...  

AbstractThe use of autonomous profiling floats for observational estimates of radiometric quantities in the ocean is explored, and the use of this platform for validation of satellite-based estimates of remote sensing reflectance in the ocean is examined. This effort includes comparing quantities estimated from float and satellite data at nominal wavelengths of 412, 443, 488, and 555 nm, and examining sources and magnitudes of uncertainty in the float estimates. This study had 65 occurrences of coincident high-quality observations from floats and MODIS Aqua and 15 occurrences of coincident high-quality observations floats and Visible Infrared Imaging Radiometer Suite (VIIRS). The float estimates of remote sensing reflectance are similar to the satellite estimates, with disagreement of a few percent in most wavelengths. The variability of the float–satellite comparisons is similar to the variability of in situ–satellite comparisons using a validation dataset from the Marine Optical Buoy (MOBY). This, combined with the agreement of float-based and satellite-based quantities, suggests that floats are likely a good platform for validation of satellite-based estimates of remote sensing reflectance.


2014 ◽  
Vol 53 (15) ◽  
pp. 3301 ◽  
Author(s):  
Zhongping Lee ◽  
Shaoling Shang ◽  
Chuanmin Hu ◽  
Giuseppe Zibordi

Cirrus ◽  
2002 ◽  
Author(s):  
Patrick Minnis

The determination of cirrus properties over large spatial and temporal scales will, in most instances, require the use of satellite data. Global coverage at resolutions as fine as several meters are attainable with instruments on Landsat, and temporal coverage at 1-min intervals is now available with the latest Geostationary Operational Environmental Satellite (GOES) imagers. Extracting information about cirrus clouds from these satellite data sets is often difficult because of variations in background, similarities to other cloud types, and the frequently semitransparent nature of cirrus clouds. From the surface, cirrus clouds are readily discerned by the human observer via the patterns of scattered visible radiation from the sun, moon, and stars. The relatively uniform background presented by the sky facilitates cloud detection and the familiar textures, structures, and apparent altitude of cirrus distinguish it from other cloud types. From satellites, cirrus can also be detected from scattered visible radiation, but the demands of accurate identification for different surface backgrounds over the entire diurnal cycle and quantification of the cirrus properties require the analysis of radiances scattered or emitted over a wide range of the electromagnetic spectrum. Many of these spectra and high-resolution satellite data can be used to understand certain aspects of cirrus clouds in particular situations. Intensive study of well-measured cases can yield a wealth of information about cirrus properties on fine scales (e.g., Minnis et al. 1990; Westphal et al. 1996). Production of a global climatology of cirrus clouds, however, requires compromises in spatial, temporal, and spectral coverage (e.g., Schiffer and Rossow 1983). This chapter summarizes both the state of the art and the potential for future passive remote sensing systems to aid the understanding of cirrus processes and to acquire sufficient statistics for constraining and refining weather and climate models. Theoretically, many different aspects of cirrus can be determined from passive sensing systems. A limited number of quantities are the focus of most efforts to describe cirrus clouds. These include the areal coverage, top and base altitude or pressure, thickness, top and base temperatures, optical depth, effective particle size and shape, vertical ice water path, and size, shape and spacing of the cloud cells.


FLORESTA ◽  
2014 ◽  
Vol 44 (4) ◽  
pp. 697
Author(s):  
Henrique Luis Godinho Cassol ◽  
Dejanira Luderitz Saldanha ◽  
Tatiana Mora Kuplich

O trabalho teve como objetivo inventariar o carbono de um fragmento de Floresta Ombrófila Mista utilizando dados provenientes de sensores de média resolução espacial. Uma cena dos sensores ASTER, LISS e TM foi empregada na obtenção dos dados radiométricos (espectrais), e os dados de biomassa e carbono (biofísicos) foram oriundos de parcelas de inventário florestal contínuo em São João do Triunfo, PR. A metodologia consistiu em estabelecer a relação empírica entre esses conjuntos de dados por meio de equações lineares de regressão. À exceção do sensor TM, que apresentou resultado insatisfatório, o uso dos dados oriundos dos sensores LISS e ASTER foi adequado para se inventariar o carbono florestal por detecção remota, com erros inferiores aos estabelecidos nas campanhas de inventários tradicionais (α < 0,05).Palavras-chave: Estoque de carbono; sensoriamento remoto; ASTER; TM; LISS. AbstractCarbon inventory in a fragment of Mixed Ombrophylous Forest by remote sensing. The research aims to make inventory of carbon of a fragment of Araucaria Forest using data from medium spatial resolution sensors. Satellite data from ASTER, TM and LISS were used to obtain the radiometric data. The above ground biomass and carbon data (biophysical data) were derived from the continuous forest inventory located in São João do Triunfo, PR. The methodology consisted of establishing the empirical relationship between spectral and biophysical data sets using linear regression. Except for the TM data, which showed unsatisfactory results, the use of ASTER and LISS satellite data was suited to forest carbon inventory by remote sensing, with errors lower than those set in traditional inventory campaigns (α < 0,05).Keywords: Carbon stock; remote sensing; ASTER; TM; LISS.


2020 ◽  
Vol 12 (23) ◽  
pp. 3975
Author(s):  
Bonyad Ahmadi ◽  
Mehdi Gholamalifard ◽  
Tiit Kutser ◽  
Stefano Vignudelli ◽  
Andrey Kostianoy

Currently, satellite ocean color imageries play an important role in monitoring of water properties in various oceanic, coastal, and inland ecosystems. Although there is a long-time and global archive of such valuable data, no study has comprehensively used these data to assess the changes in the Caspian Sea. Hence, this study assessed the variability of bio-optical properties of the upper-water column in the Southern Caspian Sea (SCS) using the archive of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). The images acquired from SeaWiFS (January 1998 to December 2002) and MODIS Aqua (January 2003 to December 2015) satellites were used to investigate the spatial–temporal variability of bio-optical properties including Chlorophyll-a (Chl-a), attenuation coefficient, and remote sensing reflectance, and environmental parameters such as sea surface temperature (SST), wind stress and the El Nino-southern oscillation (ENSO) phenomena at different time lags in the study area. The trend analysis demonstrated an overall increase of 0.3358 mg m−3 in the Chl-a concentration during 1998–2015 (annual increase rate of 0.018 mg m−3 year−1) and four algal blooms and in turn an abnormal increase in Chl-a concentration were occurred in August 2001, September 2005, 2009, and August 2010. The linear model revealed that Chl-a in the northern and middle part of the study area had been influenced by the attenuation coefficient after a one-month lag time. The analysis revealed a sharp decline in Chl-a concentration during 2011–2015 and showed a high correlation with the turbidity and attenuation coefficient in the southern region, while Kd_490nm and remote sensing reflectance did a low one. Generally, Chl-a concentration exhibited a positive correlation with the attenuation coefficient (r = 0.63) and with remote sensing reflectance at the 555 nm (r = 0.111). This study can be used as the basis for predictive modeling to evaluate the changes of water quality and bio-optical indices in the Southern Caspian Sea (SCS).


2015 ◽  
Vol 733 ◽  
pp. 124-129
Author(s):  
Hui Zhi Wu ◽  
Qi Gang Jiang ◽  
Chao Jun Bai

This work uses multiple types of remote sensing data to develop a model-based mineral exploration method. Data used include Worldview-2 satellite data as the main information source supplemented by QuickBird satellite data to assist in geological interpretations and ASTER satellite data to extract remote sensing anomalies. We have enhanced the spectral and spatial resolution of the remote sensing data using ENVI software. Human-computer interaction methods have been used to confirm the geological conditions. We have interpreted 24 distinct lithologic units, including various types of metamorphic and sedimentary rocks. A total of 471 remote sensing anomalies were delineated, consisting of 173 hydroxyl anomalies and 298 iron-staining anomalies. Geological background screening methods were applied to identify 98 remote sensing anomalies, of which 29 were recommended for further study. Based on the interpretation of anomalies extracted from the ASTER and other geological remote sensing data sets, we have established a typical-deposit prospecting model. In the model, we delineated remote sensing prospecting targets by considering: remote sensing anomalies, geologic bodies and structures, geophysical anomalies and geochemical anomalies. Using this model, we divided the work area into two zones based on types of mineral generation. Seven prospecting targets (one A class, three B class and three C class) were identified. Trenching and block sorting methods were conducted for field verification, and resulted in the discovery of two copper and two iron occurrences with commercial potential.


2021 ◽  
Vol 8 ◽  
Author(s):  
Frédéric Mélin

Uncertainty estimates are needed to assess ocean color products and qualify the agreement between missions. Comparison between field observations and satellite data, a process defined as validation, has been the traditional way to assess satellite products. However validation statistics can provide only an approximation for satellite data uncertainties as field measurements have their own uncertainties and as the validation process is imperfect, comparing data potentially differing in temporal, spatial or spectral characteristics. This study describes a method to interpret in terms of uncertainties the validation statistics obtained for ocean color remote sensing reflectance RRS knowing the uncertainties associated with field data. This approach is applied to observations collected at sites part of the Ocean Color component of the Aerosol Robotic Network (AERONET-OC) located in coastal regions of the European seas, and to RRS data from the VIIRS sensors on-board the SNPP and JPSS1 platforms. Similar estimates of uncertainties σVRS (term accounting for non-systematic contributions to the uncertainty budget) are obtained for both missions, decreasing with wavelength from the interval 0.8–1.4 10−3 sr−1 in the blue to a maximum of 0.24 10−3 sr−1 in the red, values that are at least twice (but up to 8 times) the uncertainties reported for the field data. These uncertainty estimates are then used to qualify the agreement between the VIIRS products, defining the extent to which they agree within their stated uncertainty. Despite significant biases between the two missions, their RRS products appear fairly compatible.


2019 ◽  
Vol 11 (3) ◽  
pp. 295 ◽  
Author(s):  
Javier Concha ◽  
Antonio Mannino ◽  
Bryan Franz ◽  
Wonkook Kim

Short-term (sub-diurnal) biological and biogeochemical processes cannot be fully captured by the current suite of polar-orbiting satellite ocean color sensors, as their temporal resolution is limited to potentially one clear image per day. Geostationary sensors, such as the Geostationary Ocean Color Imager (GOCI) from the Republic of Korea, allow the study of these short-term processes because their orbit permit the collection of multiple images throughout each day for any area within the sensor’s field of regard. Assessing the capability to detect sub-diurnal changes in in-water properties caused by physical and biogeochemical processes characteristic of open ocean and coastal ocean ecosystems, however, requires an understanding of the uncertainties introduced by the instrument and/or geophysical retrieval algorithms. This work presents a study of the uncertainties during the daytime period for an ocean region with characteristically low-productivity with the assumption that only small and undetectable changes occur in the in-water properties due to biogeochemical processes during the daytime period. The complete GOCI mission data were processed using NASA’s SeaDAS/l2gen package. The assumption of homogeneity of the study region was tested using three-day sequences and diurnal statistics. This assumption was found to hold based on the minimal diurnal and day-to-day variability in GOCI data products. Relative differences with respect to the midday value were calculated for each hourly observation of the day in order to investigate what time of the day the variability is greater. Also, the influence of the solar zenith angle in the retrieval of remote sensing reflectances and derived products was examined. Finally, we determined that the uncertainties in water-leaving “remote-sensing” reflectance (Rrs) for the 412, 443, 490, 555, 660 and 680 nm bands on GOCI are 8.05 × 10−4, 5.49 × 10−4, 4.48 × 10−4, 2.51 × 10−4, 8.83 × 10−5, and 1.36 × 10−4 sr−1, respectively, and 1.09 × 10−2 mg m−3 for the chlorophyll-a concentration (Chl-a), 2.09 × 10−3 m−1 for the absorption coefficient of chromophoric dissolved organic matter at 412 nm (ag (412)), and 3.7 mg m−3 for particulate organic carbon (POC). These Rrs values can be considered the threshold values for detectable changes of the in-water properties due to biological, physical or biogeochemical processes from GOCI.


Sign in / Sign up

Export Citation Format

Share Document