Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index

2017 ◽  
Vol 195 ◽  
pp. 259-274 ◽  
Author(s):  
Lauri Korhonen ◽  
Hadi ◽  
Petteri Packalen ◽  
Miina Rautiainen
2020 ◽  
Vol 12 (19) ◽  
pp. 3121
Author(s):  
Roya Mourad ◽  
Hadi Jaafar ◽  
Martha Anderson ◽  
Feng Gao

Leaf area index (LAI) is an essential indicator of crop development and growth. For many agricultural applications, satellite-based LAI estimates at the farm-level often require near-daily imagery at medium to high spatial resolution. The combination of data from different ongoing satellite missions, Sentinel 2 (ESA) and Landsat 8 (NASA), provides this opportunity. In this study, we evaluated the leaf area index generated from three methods, namely, existing vegetation index (VI) relationships applied to Harmonized Landsat-8 and Sentinel-2 (HLS) surface reflectance produced by NASA, the SNAP biophysical model, and the THEIA L2A surface reflectance products from Sentinel-2. The intercomparison was conducted over the agricultural scheme in Bekaa (Lebanon) using a large set of in-field LAIs and other biophysical measurements collected in a wide variety of canopy structures during the 2018 and 2019 growing seasons. The major studied crops include herbs (e.g., cannabis: Cannabis sativa, mint: Mentha, and others), potato (Solanum tuberosum), and vegetables (e.g., bean: Phaseolus vulgaris, cabbage: Brassica oleracea, carrot: Daucus carota subsp. sativus, and others). Additionally, crop-specific height and above-ground biomass relationships with LAIs were investigated. Results show that of the empirical VI relationships tested, the EVI2-based HLS models statistically performed the best, specifically, the LAI models originally developed for wheat (RMSE:1.27), maize (RMSE:1.34), and row crops (RMSE:1.38). LAI derived through European Space Agency’s (ESA) Sentinel Application Platform (SNAP) biophysical processor underestimated LAI and provided less accurate estimates (RMSE of 1.72). Additionally, the S2 SeLI LAI algorithm (from SNAP biophysical processor) produced an acceptable accuracy level compared to HLS-EVI2 models (RMSE of 1.38) but with significant underestimation at high LAI values. Our findings show that the LAI-VI relationship, in general, is crop-specific with both linear and non-linear regression forms. Among the examined indices, EVI2 outperformed other vegetation indices when all crops were combined, and therefore it can be identified as an index that is best suited for a unified algorithm for crops in semi-arid irrigated regions with heterogeneous landscapes. Furthermore, our analysis shows that the observed height-LAI relationship is crop-specific and essentially linear with an R2 value of 0.82 for potato, 0.79 for wheat, and 0.50 for both cannabis and tobacco. The ability of the linear regression to estimate the fresh and dry above-ground biomass of potato from both observed height and LAI was reasonable, yielding R2: ~0.60.


2019 ◽  
Vol 11 (10) ◽  
pp. 1160 ◽  
Author(s):  
Lorenz Hans Meyer ◽  
Marco Heurich ◽  
Burkhard Beudert ◽  
Joseph Premier ◽  
Dirk Pflugmacher

With the launch of the Sentinel-2 satellites, a European capacity has been created to ensure continuity of Landsat and SPOT observations. In contrast to previous sensors, Sentinel-2′s multispectral imager (MSI) incorporates three additional spectral bands in the red-edge (RE) region, which are expected to improve the mapping of vegetation traits. The objective of this study was to compare Sentinel-2 MSI and Landsat-8 OLI data for the estimation of leaf area index (LAI) in temperate, deciduous broadleaf forests. We used hemispherical photography to estimate effective LAI at 36 field plots. We then built and compared simple and multiple linear regression models between field-based LAI and spectral bands and vegetation indices derived from Landsat-8 and Sentinel-2, respectively. Our main findings are that Sentinel-2 predicts LAI with comparable accuracy to Landsat-8. The best Landsat-8 models predicted LAI with a root-mean-square error (RMSE) of 0.877, and the best Sentinel-2 model achieved an RMSE of 0.879. In addition, Sentinel-2′s RE bands and RE-based indices did not improve LAI prediction. Thirdly, LAI models showed a high sensitivity to understory vegetation when tree cover was sparse. According to our findings, Sentinel-2 is capable of delivering data continuity at high temporal resolution.


2020 ◽  
Vol 168 ◽  
pp. 236-250 ◽  
Author(s):  
Taifeng Dong ◽  
Jiangui Liu ◽  
Budong Qian ◽  
Liming He ◽  
Jane Liu ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
Lingchen Lin ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Yangbo Deng ◽  
Zhenbang Hao ◽  
...  

As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI) has always attracted attention. To explore a potential method to estimate forest LAI from 3D point cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0°), T15 (15°), T30 (30°), OT15 (0° and 15°) and OT30 (0° and 30°)), which were used to reconstruct 3D point cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area distribution in the vertical direction derived from five schemes were calculated based on the voxelized model. Our results show that the serious lack of leaf area in the middle and lower layers determines that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30° photos always provided better LAI estimates than schemes with 15° photos (T30 better than T15, OT30 better than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes (OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2; OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] = 0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be an effective solution to estimate forest LAI.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 505
Author(s):  
Gregoriy Kaplan ◽  
Offer Rozenstein

Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.


2016 ◽  
Vol 123 ◽  
pp. 195-202 ◽  
Author(s):  
Marco Mora ◽  
Felipe Avila ◽  
Marcos Carrasco-Benavides ◽  
Gonzalo Maldonado ◽  
Jeissy Olguín-Cáceres ◽  
...  

2018 ◽  
Vol 10 (5) ◽  
pp. 763 ◽  
Author(s):  
Manuel Campos-Taberner ◽  
Francisco García-Haro ◽  
Lorenzo Busetto ◽  
Luigi Ranghetti ◽  
Beatriz Martínez ◽  
...  

Author(s):  
Terhikki Manninen ◽  
Jean‐Louis Roujean ◽  
Olivier Hautecoeur ◽  
Aku Riihelä ◽  
Panu Lahtinen ◽  
...  

Author(s):  
Katarzyna Dabrowska-Zielinska ◽  
Maciej Bartold ◽  
Radoslaw Gurdak ◽  
Martyna Gatkowska ◽  
Wojciech Kiryla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document