Optimization of power coefficient on a horizontal axis wind turbine using bem theory

2013 ◽  
Vol 26 ◽  
pp. 169-182 ◽  
Author(s):  
B. Bavanish ◽  
K. Thyagarajan
2021 ◽  
Vol 294 ◽  
pp. 01003
Author(s):  
Somaya Younoussi ◽  
Abdeslem Ettaouil

In this paper, an optimization approach of a small horizontal axis wind turbine based on BEM theory including De Vries and Shen et al. tip loss corrections is proposed. The optimal blade geometry was obtained by maximizing the power coefficient along the blade using the optimal angle of attack and the optimal tip speed ratio. The Newton’s iterative method applied to axial induction factor was used to solve the problem. This study was conducted for a NACA4418 small wind turbine, at low wind velocity. Among the two used tip loss corrections, the De Vries correction was found to be the most suitable for this blade optimization method. The optimal design was obtained for a tip speed ratio of 5 and has recorded a power coefficient equal to 0.463.


2020 ◽  
Vol 37 ◽  
pp. 63-71
Author(s):  
Yui-Chuin Shiah ◽  
Chia Hsiang Chang ◽  
Yu-Jen Chen ◽  
Ankam Vinod Kumar Reddy

ABSTRACT Generally, the environmental wind speeds in urban areas are relatively low due to clustered buildings. At low wind speeds, an aerodynamic stall occurs near the blade roots of a horizontal axis wind turbine (HAWT), leading to decay of the power coefficient. The research targets to design canards with optimal parameters for a small-scale HAWT system operated at variable rotational speeds. The design was to enhance the performance by delaying the aerodynamic stall near blade roots of the HAWT to be operated at low wind speeds. For the optimal design of canards, flow fields of the sample blades with and without canards were both simulated and compared with the experimental data. With the verification of our simulations, Taguchi analyses were performed to seek the optimum parameters of canards. This study revealed that the peak performance of the optimized canard system operated at 540 rpm might be improved by ∼35%.


Author(s):  
Tom Gerhard ◽  
Michael Sturm ◽  
Thomas H. Carolus

State-of-the-art wind turbine performance prediction is mainly based on semi-analytical models, incorporating blade element momentum (BEM) analysis and empirical models. Full numerical simulation methods can yield the performance of a wind turbine without empirical assumptions. Inherent difficulties are the large computational domain required to capture all effects of the unbounded ambient flow field and the fact that the boundary layer on the blade may be transitional. A modified turbine design method in terms of the velocity triangles, Euler’s turbine equation and BEM is developed. Lift and drag coefficients are obtained from XFOIL, an open source 2D design and analysis tool for subcritical airfoils. A 3 m diameter horizontal axis wind turbine rotor was designed and manufactured. The flow field is predicted by means of a Reynolds-averaged Navier-Stokes simulation. Two turbulence models were utilized: (i) a standard k-ω-SST model, (ii) a laminar/turbulent transition model. The manufactured turbine is placed on the rooftop of the University of Siegen. Three wind anemometers and wind direction sensors are arranged around the turbine. The torque is derived from electric power and the rotational speed via a calibrated grid-connected generator. The agreement between the analytically and CFD-predicted kinematic quantities up- and downstream of the rotor disc is quite satisfactory. However, the blade section drag to lift ratio and hence the power coefficient vary with the turbulence model chosen. Moreover, the experimentally determined power coefficient is considerably lower as predicted by all methods. However, this conclusion is somewhat preliminary since the existing experimental data set needs to be extended.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2649 ◽  
Author(s):  
Artur Bugała ◽  
Olga Roszyk

This paper presents the results of the computational fluid dynamics (CFD) simulation of the airflow for a 300 W horizontal axis wind turbine, using additional structural elements which modify the original shape of the rotor in the form of multi-shaped bowls which change the airflow distribution. A three-dimensional CAD model of the tested wind turbine was presented, with three variants subjected to simulation: a basic wind turbine without the element that modifies the airflow distribution, a turbine with a plano-convex bowl, and a turbine with a centrally convex bowl, with the hyperbolic disappearance of convexity as the radius of the rotor increases. The momentary value of wind speed, recorded at measuring points located in the plane of wind turbine blades, demonstrated an increase when compared to the base model by 35% for the wind turbine with the plano-convex bowl, for the wind speed of 5 m/s, and 31.3% and 49% for the higher approaching wind speed, for the plano-convex bowl and centrally convex bowl, respectively. The centrally convex bowl seems to be more appropriate for higher approaching wind speeds. An increase in wind turbine efficiency, described by the power coefficient, for solutions with aerodynamic bowls was observed.


Author(s):  
Manoj Kumar Chaudhary ◽  
◽  
S. Prakash ◽  

In this research work, the investigation and optimization of small horizontal axis wind turbine blade at low wind speed is pursued. The experimental blades were developed using the 3D printing additive manufacturing technique. The airfoils E210, NACA2412, S1223, SG6043, E216, NACA4415, SD7080, SD7033, S1210 and MAF were tested at the wind speed of 2-6 m/s. The airfoils and optimum blade geometry were investigated with the aid of the Xfoil software at Reynolds number of 100,000. The initial investigation range included tip speed ratios from 3 to 10, solidity from 0.0431 – 0.1181 and angle of attacks from 2o to 20o. Later on these parameters were varied in MATLAB and Xfoil software for optimization and investigation of the power coefficient, lift coefficient, drag coefficient and lift to drag ratio. The cut-in wind speed of the rotors was 2 and 2.5 m/s with the winglet-equipped blades and without winglets. It was found that the E210, SG6043, E216 NACA4415 and MAF airfoil displayed better performance than the NACA 2412, S1223, SD7080, S1210 & SD7003 for the geometry optimized for the operating conditions and manufacturing method described.


2019 ◽  
Vol 8 (3) ◽  
pp. 3390-3400

In the present study, Blade Element Momentum theory (BEMT) has been implemented to heuristically design a rotor blade for a 2kW Fixed Pitch Fixed Speed (FPFS) Small Scale Horizontal Axis Wind Turbine (SSHAWT). Critical geometrical properties viz. Sectional Chord ci and Twist distribution θTi for the idealized, optimized and linearized blades are analytically determined for various operating conditions. Results obtained from BEM theory demonstrate that the average sectional chord ci and twist distribution θTi of the idealized blade are 20.42% and 14.08% more in comparison with optimized blade. Additionally, the employment of linearization technique further reduced the sectional chord ci and twist distribution θTi of the idealized blade by 17.9% and 14% respectively, thus achieving a viable blade bounded by the limits of economic and manufacturing constraints. Finally, the study also reveals that the iteratively reducing blade geometry has an influential effect on the solidity of the blade that in turn affects the performance of the wind turbine.


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
I Kade Wiratama ◽  
Made Mara ◽  
L. Edsona Furqan Prina

The willingness of electrical energy is one energy system has a very important role in the economic development of a country's survival. As one energy source (wind) can be converted into electrical energy with the use of a horizontal axis wind turbine. Wind Energy Conversion Systems (WECS) that we know are two wind turbines in general, ie the horizontal axis wind turbine and vertical axis wind turbine is one type of renewable energy use wind as an energy generator. The purpose of this study was to determine the effect of the number of blade and the radius chord of rotation (n), Torque (T), Turbine Power (P), Power Coefficient (CP) and Tip Speed Ratio (λ) generated by the horizontal axis wind turbine with form linear taper. The results show that by at the maximum radius of the chord R3 the number blade 4 is at rotation = 302.700 rpm, Pturbine = 7.765 watt, Torque = 0.245 Nm, λ = 3.168 and Cp = 0.403 or 40.3%.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Osarobo Ighodaro ◽  
David Akhihiero

Abstract Wind energy is increasingly becoming a major discussion amongst renewable energy sources due to its sustainability, reduced impact on the environment, and being significantly cheaper than conventional fossil fuels. Researchers have been particularly concerned with studying improved design and optimization using computational technique and experimentation. This research aims at designing blades for a small horizontal axis wind turbine for low Reynolds number using blade element momentum theory and using computational fluid dynamics (cfd) and experiment to analyze its performance. Two airfoils (SG6050 and SG6043) were selected for different regions of the blade span. Four turbulent models were used in predicting its performance. The performance was analyzed for wind speeds between 2 m/s and 7 m/s. Studies showed that the blade is capable of generating power up to 241 W with a power coefficient of 34.3% at a speed of 6 m/s. The computed power coefficient is in good agreement with experimental results of 33.7%.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Ali M. Abdelsalam ◽  
W. A. El-Askary ◽  
M. A. Kotb ◽  
I. M. Sakr

Abstract This article aims to study numerically the effect of curvature of linear blade profile on the performance of small-scale horizontal axis wind turbine (SSHAWT). Rotors with two curvature types, f forward angles 5 deg, 10 deg, 15 deg, 20 deg, 30 deg, and 45 deg and backward angles −5 deg, −10 deg, and −15 deg, are investigated. Furthermore, three curvature positions of r/R = 0.8, 0.9, and 0.95 are studied. The numerical simulations are performed on rotors of radius 0.5 m at different wind speeds. The results are compared with straight rotor of linear profiles of chord and twist, which is considered as base rotor. It is found that the rotor with forward curvature of 5 deg and r/R = 0.9 has the highest power coefficient compared with the other rotors. At the peak performance, the proposed rotor reduces the axial thrust by about 12.5% compared with the base rotor. The flow behavior represented by the streamlines contours is also discussed. In such case, the separation approximately disappeared for the tip speed ratios of 5 and 6, which is responsible for the performance peak.


2014 ◽  
Vol 1079-1080 ◽  
pp. 543-546 ◽  
Author(s):  
Zhi Kui Wang ◽  
Yi Bao Chen ◽  
Gwo Chung Tsai

The wind turbines have gained a wide range of applications in Renewable Energy Sources (RES) by virtue of its dominant advantages, and it has achieved almost the state-of-the-art from the engineering point of view. Nevertheless, the starting behavior which plays a prominent role in wind power generation has achieved few studies up to this moment. We conducted this analysis of a micro horizontal axis wind turbine (MHAWT) on its starting behavior to give insight into its start-up torque as well as its start-up speed on an assumption that it is rigid body, and some relative simplification on its structure are adopted meanwhile. The wind turbine's power coefficient CP, tip-speed-ratio l along with torque coefficient CT were taken into consideration and discussed to a large extent in order to having a relative clear cognition of its operational characteristics.


Sign in / Sign up

Export Citation Format

Share Document