Small-scale power generation analysis: Downdraft gasifier coupled to engine generator set

2016 ◽  
Vol 58 ◽  
pp. 491-498 ◽  
Author(s):  
Luiz Inácio Chaves ◽  
Marcelo José da Silva ◽  
Samuel Nelson Melegari de Souza ◽  
Deonir Secco ◽  
Helton Aparecido Rosa ◽  
...  
2022 ◽  
Vol 7 ◽  
pp. 10
Author(s):  
Miguel Mendonça ◽  
Victor Mantilla ◽  
João Patela ◽  
Valter Silva ◽  
Fernanda Resende

This paper addresses the design, development and experimental tests of a prototype of fuel gas generation system based on biomass gasification for small-scale applications, around 5 kW. It comprises the small scale downdraft gasifier and the gas cleaning system aiming to clean-up the producer gas to be used in the upstream Internal Combustion Engine (ICE). The design of the downdraft gasifier prototype follows the methodologies that have been reported on the available literature. However, since these methodologies apply to gasifiers with larger rated powers, the adopted methodology is based on the extrapolation of the main parameters used for larger gasifiers design. For runing the ICE the producer gas requires to have a specific gas composition with an acceptable range of impurities. Therefore, a clean-up system was proposed following three stages: in first instance a hot gas clean-up using a cyclone designed to eliminate particles and compounds; then a heat exchanger was used for cooling the gas to condensate tars and water; finally a cold gas clean-up is performed by filtration using two filter steps: the first one using organic material (biomass) and the second one using a polypropylene cartridge filter. Experimental tests were performed using the developed imbert downdraft gasifier prototype, using pellets as feedstock. The preliminary results allow verifying several drawbacks that will difficult an effective integration of the developed prototype for small scale power generation applications based on ICE using low density feedstock.


Author(s):  
Murugan Paradesi Chockalingam ◽  
Navaneethakrishnan Palanisamy ◽  
Saji Raveendran Padmavathy ◽  
Edwin Mohan ◽  
Beno Wincy Winsly ◽  
...  

2021 ◽  
Vol 1051 (1) ◽  
pp. 012054
Author(s):  
N A Najwa Annuar ◽  
N Kamarulzaman ◽  
Z F M Shadzalli ◽  
I H I Abdullah ◽  
P Y Liew ◽  
...  

Author(s):  
Segen F. Estefen ◽  
Paulo Roberto da Costa ◽  
Eliab Ricarte ◽  
Marcelo M. Pinheiro

Wave energy is a renewable and non-polluting source and its use is being studied in different countries. The paper presents an overview on the harnessing of energy from waves and the activities associated with setting up a plant for extracting energy from waves in Port of Pecem, on the coast of Ceara State, Brazil. The technology employed is based on storing water under pressure in a hyperbaric chamber, from which a controlled jet of water drives a standard turbine. The wave resource at the proposed location is presented in terms of statistics data obtained from previous monitoring. The device components are described and small scale model tested under regular waves representatives of the installation region. Based on the experimental results values of prescribed pressures are identified in order to optimize the power generation.


Fuel ◽  
2021 ◽  
Vol 303 ◽  
pp. 121297
Author(s):  
A. Zachl ◽  
M. Buchmayr ◽  
J. Gruber ◽  
A. Anca-Couce ◽  
R. Scharler ◽  
...  

Author(s):  
Matti Malkamäki ◽  
Ahti Jaatinen-Värri ◽  
Antti Uusitalo ◽  
Aki Grönman ◽  
Juha Honkatukia ◽  
...  

Decentralized electricity and heat production is a rising trend in small-scale industry. There is a tendency towards more distributed power generation. The decentralized power generation is also pushed forward by the policymakers. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and improvements in their electrical efficiency have a substantial impact from the environmental and economic viewpoints. This paper introduces an intercooled and recuperated three stage, three-shaft gas turbine concept in 850 kW electric output range. The gas turbine is optimized for a realistic combination of the turbomachinery efficiencies, the turbine inlet temperature, the compressor specific speeds, the recuperation rate and the pressure ratio. The new gas turbine design is a natural development of the earlier two-spool gas turbine construction and it competes with the efficiencies achieved both with similar size reciprocating engines and large industrial gas turbines used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, which has a simulated electrical efficiency of 48% as well as thermal efficiency of 51% and can compete with reciprocating engines in terms of electrical efficiency at nominal and partial load conditions.


2014 ◽  
Vol 3 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Akiyoshi KAN-NO ◽  
Tamio IDA

Author(s):  
Heri Suryoatmojo

Currently the needs of electric power increased rapidly along with the development of technology. The increase in power requirements is contrary to the availability of sources of energy depletion of oil and coal. This problem affects the national electrical resistance. To meet the needs of large electric power with wide area coverage is required small scale distributed power generation. This distributed generation (DG) of renewable energy sources sought to minimize the use of energy resources such as oil and coal and connected to the micro grid and use the battery as a power balance. Because of there are many DGs and the use of batteries, therefore it is important to determine the optimal power generation of each plant as well as the use of battery based on the optimal capacity so that requirement of electric power can be met with minimal cost each time. This optimization is known as Dynamic Economic Dispatch. In this study, the methods of Quadratic Programming is required to solve the optimization problem.


Sign in / Sign up

Export Citation Format

Share Document