scholarly journals The synergy between stakeholders for cellulosic biofuel development: Perspectives, opportunities, and barriers

2021 ◽  
Vol 137 ◽  
pp. 110613
Author(s):  
Carrie Leibensperger ◽  
Pan Yang ◽  
Qiankun Zhao ◽  
Shuran Wei ◽  
Ximing Cai
Keyword(s):  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shannon M. Hoffman ◽  
Maria Alvarez ◽  
Gilad Alfassi ◽  
Dmitry M. Rein ◽  
Sergio Garcia-Echauri ◽  
...  

Abstract Background Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures. Results In this work, we show that cellulosic emulsions hydrolyze rapidly at temperatures tolerable to yeast, reaching up to 40-fold higher conversion in the first hour compared to microcrystalline cellulose (MCC). To evaluate suitable conditions for the eSSF process, we explored the upper temperature limits for the thermotolerant yeasts Kluyveromyces marxianus and Ogataea polymorpha, as well as Saccharomyces cerevisiae, and observed robust fermentation at up to 46, 50, and 42 °C for each yeast, respectively. We show that the eSSF process reaches high ethanol titers in short processing times, and produces close to theoretical yields at temperatures as low as 30 °C. Finally, we demonstrate the transferability of the eSSF technology to other products by producing the advanced biofuel isobutanol in a light-controlled eSSF using optogenetic regulators, resulting in up to fourfold higher titers relative to MCC SSF. Conclusions The eSSF process addresses the main challenges of cellulosic biofuel production by increasing saccharification rate at temperatures tolerable to yeast. The rapid hydrolysis of these emulsions at low temperatures permits fermentation using non-thermotolerant yeasts, short processing times, low enzyme loads, and makes it possible to extend the process to chemicals other than ethanol, such as isobutanol. This transferability establishes the eSSF process as a platform for the sustainable production of biofuels and chemicals as a whole.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhuo Liu ◽  
Shih-Hsin Ho ◽  
Kengo Sasaki ◽  
Riaan den Haan ◽  
Kentaro Inokuma ◽  
...  

2017 ◽  
Vol 10 (1) ◽  
Author(s):  
David Peris ◽  
Ryan V. Moriarty ◽  
William G. Alexander ◽  
EmilyClare Baker ◽  
Kayla Sylvester ◽  
...  

2018 ◽  
Vol 61 (6) ◽  
pp. 1775-1782
Author(s):  
Sun Min Kim ◽  
DoKyoung Lee ◽  
Santanu Thapa ◽  
Bruce S. Dien ◽  
Mike E. Tumbleson ◽  
...  

Abstract. To examine the chemical composition and ethanol production of feedstocks grown on marginal lands, prairie cordgrass and switchgrass from waterlogged land, saline land, and saline water irrigated land were evaluated. Samples were pretreated using 1% w w-1 dilute acid at 160°C for 10 min, and simultaneous saccharification and cofermentation was conducted using industrial engineered . Samples grown on land irrigated with saline water had 2.8-fold higher total ash content compared to the other types of land, resulting in lower carbohydrate concentrations. Yeast fermented glucose and xylose simultaneously; almost all of the sugars were consumed, indicating that salts present in biomass ash did not inhibit yeast performance. Ethanol production from the waterlogged and saline lands was 2,500 to 4,700 L ha-1, which is comparable to that of samples grown on other agricultural lands. Prairie cordgrass and switchgrass grown on marginal lands could be potential feedstocks for cellulosic biofuel. Keywords: Irrigation, Marginal land, Prairie cordgrass, Saline, Simultaneous saccharification and cofermentation, Switchgrass, Waterlogging.


2017 ◽  
Author(s):  
Chenlu Zhang ◽  
Ligia Acosta-Sampson ◽  
Vivian Yaci Yu ◽  
Jamie H. D. Cate

AbstractThe economic production of cellulosic biofuel requires efficient and full utilization of all abundant carbohydrates naturally released from plant biomass by enzyme cocktails. Recently, we reconstituted the Neurospora crassa xylodextrin transport and consumption system in Saccharomyces cerevisiae, enabling growth of yeast on xylodextrins aerobically. However, the consumption rate of xylodextrin requires improvement for industrial applications, including consumption in anaerobic conditions. As a first step in this improvement, we report analysis of orthologues of the N. crassa transporters CDT-1 and CDT-2. Transporter ST16 from Trichoderma virens enables faster aerobic growth of S. cerevisiae on xylodextrins compared to CDT-2. ST16 is a xylodextrin-specific transporter, and the xylobiose transport activity of ST16 is not inhibited by cellobiose. Other transporters identified in the screen also enable growth on xylodextrins including xylotriose. Taken together, these results indicate that multiple transporters might prove useful to improve xylodextrin utilization in S. cerevisiae. Efforts to use directed evolution to improve ST16 from a chromosomally-integrated copy were not successful, due to background growth of yeast on other carbon sources present in the selection medium. Future experiments will require increasing the baseline growth rate of the yeast population on xylodextrins, to ensure that the selective pressure exerted on xylodextrin transport can lead to isolation of improved xylodextrin transporters.


Sign in / Sign up

Export Citation Format

Share Document