Statistical analysis of greenhouse gas emissions of South Korean residential buildings

2022 ◽  
Vol 156 ◽  
pp. 111981
Author(s):  
Changyoon Ji ◽  
Taehoon Hong ◽  
Hakpyeong Kim
2014 ◽  
Vol 935 ◽  
pp. 138-141
Author(s):  
Zahra Balador ◽  
Zahra Raeisi

Using salvages and reused materials is an effort to conserve energy and other resources, and reduce greenhouse gas emissions; on the other hand, these materials cost a fraction of the price of new. The information generated by this study revealed several useful material management guidelines. Statistical results shows that designers who are educated about these products and how they can be used, are interested in using recycled materials, and can potentially decrease the amount of trash being produced on a much larger level. All information was obtained from product brochures, manufacturer websites, visiting construction sites, statistical analysis and conversations with designers.


2021 ◽  
Vol 11 (17) ◽  
pp. 8086
Author(s):  
Benjamin Govehovitch ◽  
Martin Thebault ◽  
Karine Bouty ◽  
Stéphanie Giroux-Julien ◽  
Éric Peyrol ◽  
...  

The achievement of the targets for reducing greenhouse gas emissions set by the Paris Agreements and the Swiss federal law on the reduction of greenhouse gas emissions (CO2 law) requires massive use of renewable energies, which cannot be achieved without their adoption by the general public. The solar cadaster developed as part of the INTERREG G2 Solar project is intended to assess the solar potential of buildings at the scale of Greater Geneva—for both industrial buildings and for individual residential buildings—at a resolution of 1 m. The new version of the solar cadaster is intended to assess the solar potential of roofs, as well as that of vertical facades. The study presented here aims to validate this new version through a comparison with results obtained with two other simulation tools that are widely used and validated by the scientific community. The good accordance with the results obtained with ENVI-met and DIVA-for-Rhino demonstrates the capability of the radiative model developed for the solar cadaster of Greater Geneva to accurately predict the radiation levels of building facades in configurations with randomly distributed buildings (horizontally or vertically).


Author(s):  
Raluca Andreea Felseghi ◽  
Teodora Melania Şoimoşan ◽  
Constatin Filote ◽  
Maria Simona Răboaca

Currently, buildings are considered to be a continuously evolving organism that over time has to be treated, rehabilitated, and upgraded to meet the requirements set by the user at a certain stage. Buildings are a central element of the EU member states' energy efficiency policies, accounting for about 40% of final energy consumption, and 36% of greenhouse gas emissions, and about 75% of buildings are not energy efficient. Recent applications and studies establish that green retrofitting has maintained older existing buildings to increase energy efficiency, optimize building performance, increase occupants' satisfaction, and boost economic return while decreasing greenhouse gas emissions. In this regard, this chapter aims to address the main factors that negatively affect the performance of residential buildings and presents the common green retrofitting measures that can be taken to ensure the state of human well-being in residential buildings.


2020 ◽  
pp. 1420326X2096216
Author(s):  
Olga Kolodiy ◽  
Guedi Capeluto

Carbon dioxide is the largest component of the human footprint and one of the major components of all greenhouse gases. The expected increase in population will lead to growth in energy consumption and greenhouse gas emissions. The building industry has the highest potential for reducing greenhouse gas emissions. Therefore, buildings should become not only efficient consumers but also energy producers, not a simple task in dense cities. The paper describes the feasibility and limitations of near zero energy design in highly dense urban conditions. The study was carried out by examination and comparison of various density design, alternatives of an existing urban plot in the coastal climate zone of Israel. Increased dwelling units’ number leads to higher total energy use on the one hand and mutual shading of new high-rise residential buildings on the other. Preserving solar rights for PV systems installation become more complex. The relation between urban density and solar rights in urban design, energy consumption and energy generation within plot borders and their implications are presented and discussed in the paper.


2019 ◽  
Vol 11 (22) ◽  
pp. 6482
Author(s):  
Katerina Sojkova ◽  
Martin Volf ◽  
Antonin Lupisek ◽  
Roman Bolliger ◽  
Tomas Vachal

Energy retrofitting of existing building stock has significant potential for the reduction of energy consumption and greenhouse gas emissions. Roughly half of the CO2 emissions from Czech building stock are estimated to be allocated to residential buildings. Approximately one-third of the Czech residential building stock have already been retrofitted, but retrofitting mostly takes place in large cities due to greater income. A favourable concept for the mass retrofitting of residential building stock, affordable even in low-income regions, was of interest. For a reference building, multi-criteria assessment of numerous retrofitting measures was performed. The calculation involved different building elements, materials, solutions, and energy-efficiency levels in combination with various heating systems. The assessment comprised environmental impact, represented by operational and embodied primary energy consumption and greenhouse gas emissions, and investment and operational costs using the annuity method. Analysis resulted in the identification of favourable retrofitting measures and showed that complex building retrofitting is advantageous from both a cost and an environmental point of view. The environmental burden could be decreased by approximately 10–30% even without photovoltaic installation, and costs per year could be decreased by around 40%.


Buildings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 99
Author(s):  
Björn Berggren ◽  
Maria Wall

One of the greatest challenges for the world today is the reduction of greenhouse gas emissions. As buildings contribute to almost a quarter of the greenhouse gas emissions worldwide, reducing the energy use of the existing building stock is an important measure for climate change mitigation. In order to increase the renovation pace, there is a need for a comprehensive technical documentation that describes different types of buildings in the existing building stock. The purpose of this study is to analyse and describe existing residential buildings in Sweden. The data are based on published reports from 1967 to 1994 that have not been publicly available in a database for other researchers to study until now. Data from the reports have been transferred to a database and analysed to create a reference for buildings and/or a description of building typology in Sweden. This study found that there is a rather large homogeneity in the existing residential building stock. However, it is not possible to use a single reference building or building technique to cover the majority of the existing buildings. In Sweden, common constructions for exterior walls in multi-dwelling buildings which should be used for further studies are insulated wood infill walls with clay brick façades, lightweight concrete walls with rendered façades and concrete sandwich walls. The most common constructions for one- and two-dwelling buildings are insulated wooden walls with clay brick façades or wooden façades. Furthermore, roof constructions with insulated tie beam and roof constructions where the tie beam is a part of the interior floor slab are frequently used and should be included in further studies.


2021 ◽  
Vol 14 (5) ◽  
Author(s):  
Guglielmina Mutani ◽  
Valeria Todeschi

AbstractThe EU building stock is 97% not energy efficient and the promotion of energy retrofitting strategies is a key way of reducing energy consumptions and greenhouse gas emission. In order to improve the energy performance of buildings, the European Union released the Energy Performance of Buildings and the Energy Efficiency Directives. The certification of the energy performance of a building is a central element of these Directives to monitor and promote energy performance improvements in buildings, with the aim of increasing their energy efficiency level, thereby reducing greenhouse gas emissions. This work evaluates the energy performance of existing residential buildings using the energy performance certificate database and identifies the more effective retrofitting interventions by applying an urban-scale energy model. The novelty of this study is that a new retrofitting database is created to improve the results of a building energy model at urban scale taking into account the real characteristics of the built environment. The here presented GIS-based monthly engineering model is flexible and easily applicable to different contexts, and was used to investigate energy efficiency scenarios by evaluating their effects of city scale. An urban energy atlas was designed for an Italian city, Turin, as a decision-making platform for policy makers and citizens. This energy platform can give information on energy consumption, production and productivity potential, but also on energy retrofitting scenarios. The results of this work show that it is possible to obtain energy savings for space heating of 79,064 MWh/year for the residential buildings connected to the district heating network in the city of Turin; these interventions refer mainly to thermal insulation of buildings envelope with windows replacement and allow a reduction in greenhouse gas emissions of 12,097 tonCO2eq/year.


Sign in / Sign up

Export Citation Format

Share Document