Investigating the impact of metal ions and 3D printed droplet microfluidics chip geometry on the luminol‑potassium periodate chemiluminescence system for estimating total phenolic content in olive oil

Author(s):  
Baqia Al Mughairy ◽  
Haider A.J. Al-Lawati ◽  
FakhrEldin O. Suliman
Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2449 ◽  
Author(s):  
Panagiotis Diamantakos ◽  
Triada Giannara ◽  
Maria Skarkou ◽  
Eleni Melliou ◽  
Prokopios Magiatis

The phenolic fraction of the extra virgin olive oil (EVOO) has been studied over the past two decades because of its important health protective properties. Numerous studies have been performed in order to clarify the most crucial factors that affect the concentration of the EVOO’s phenolic fraction and many contradictory results have been reported. Having as target to maximize the phenolic content of EVOO and its healthy properties we investigated the impact of harvest time, malaxation temperature, and malaxation duration on the concentration of individual phenols in extra virgin olive oil. Olive oil was prepared in a lab-scale olive mill from different varieties in Greece. The extraction process for cultivar (cv) Koroneiki samples was performed at five different harvest periods from the same trees with three different malaxation temperatures and five different malaxation duration times (N = 75). Similar types of experiments were also performed for other varieties: cv Athenolia (N = 20), cv Olympia (N = 3), cv Kalamata (N = 3), and cv Throubolia Aegean (N=3) in order to compare the changes in the phenolic profile during malaxation. The quantitative analysis of the olive oil samples with NMR showed that the total phenolic content has a negative correlation with the ripening degree and the malaxation time. The NMR data we collected helped us to quantitate not only the total phenolic content but also the concentration of the major phenolic compounds such as oleocanthal, oleacein, oleokoronal, and oleomissional. We noticed different trends for the concentration of these phenols during malaxation process and for different malaxation temperatures. The different trends of the concentration of the individual phenols during malaxation and the completely different behavior of each variety revealed possible biosynthetic formation steps for oleocanthal and oleacein and may explain the discrepancies reported from previous studies.


2018 ◽  
Vol 6 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Maria Giannakourou ◽  
Irini F. Stratati ◽  
Efthimia Maria Manika ◽  
Victoria Resiti ◽  
Panagiotis Tataridis ◽  
...  

This study aimed at investigating the benefits of immersing oak sticks in the Greek pomace brandy named tsipouro, regarding its total phenolic content, antiradical-antioxidant activity, colour parameters and sensory profile. In order to induce rapid aging of tsipouro, alternative experimental conditions were applied. Results revealed that the phenolic migration from the wood to the tsipouro significantly increased both with temperature increase during aging as well as with the oak sticks /tsipouro ratio (w/v). The impact of oak wood diversity was also tested, by selecting different types of French oak (Quercus robur) and French and American oak mix (Quercus robur- Quercus alba) sticks. Results exhibited a significant effect of wood stick type on total phenolic content, antioxidant and antiradical activity, colour values and sensory attributes, especially on overall acceptance. High positive correlation among total phenolic content, antiradical and antioxidant activity and overall acceptance was found for all the extracts studied. Wood aging promoted the migration of phenolic compounds from the wood into the tsipouro, which, apart from the organoleptic characteristics, could possess health beneficial effects.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5000
Author(s):  
Nikolaos Kokras ◽  
Eleni Poulogiannopoulou ◽  
Marinos G. Sotiropoulos ◽  
Rafaella Paravatou ◽  
Eleni Goudani ◽  
...  

The aim of this study was to determine the cognitive and behavioral effects of extra virgin olive oil total phenolic content (TPC) and Sideritis (SID) extracts in female mice, and identify the associated neurochemical changes in the hippocampus and the prefrontal cortex. All animals received intraperitoneal low or high doses of TPC, SID or vehicle treatment for 7 days and were subjected to the Open Field (OF), Novel Object Recognition (NOR) and Tail Suspension Test (TST). The prefrontal cortex and hippocampus were dissected for analysis of neurotransmitters and aminoacids with high performance liquid chromatography with electrochemical detection (HPLC-ED). Both TPC doses enhanced vertical activity and center entries in the OF, which could indicate an anxiolytic-like effect. In addition, TPC enhanced non-spatial working memory and, in high doses, exerted antidepressant effects. On the other hand, high SID doses remarkably decreased the animals’ overall activity. Locomotor and exploratory activities were closely associated with cortical increases in serotonin turnover induced by both treatments. Cognitive performance was linked to glutamate level changes. Furthermore, TPC reduced cortical taurine levels, while SID reduced cortical aspartate levels. TPC seems to have promising cognitive, anxiolytic and antidepressant effects, whereas SID has sedative effects in high doses. Both extracts act in the brain, but their specific actions and properties merit further exploration.


2012 ◽  
Vol 5 (6) ◽  
pp. 1311-1319 ◽  
Author(s):  
Edwar Fuentes ◽  
María E. Báez ◽  
Manuel Bravo ◽  
Camila Cid ◽  
Fabián Labra

Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5274
Author(s):  
Ewa Olechno ◽  
Anna Puścion-Jakubik ◽  
Renata Markiewicz-Żukowska ◽  
Katarzyna Socha

Coffee is a widely consumed beverage, both in Europe, where its consumption is highest, and on other continents. It provides many compounds, including phenolic compounds. The aim of the study was to assess the effect of various brewing methods on the total phenolic content (TPC) in the infusion. Research material comprised commercially available coffees: Instant Arabica and Robusta, freshly ground Arabica and Robusta (immediately prior to the analysis), ground Arabica and Robusta, decaffeinated Arabica, and green Arabica and Robusta. The following preparation methods were used: Pouring hot water over coffee grounds or instant coffee, preparing coffee in a percolator and using a coffee machine. Additional variables which were employed were water temperature (90 or 100 °C) and its type (filtered or unfiltered). In order to determine the impact of examined factors, 225 infusion were prepared. Total phenolic content was determined by the spectrophotometric method using the Folin-Ciocalteu reagent and the obtained results were expressed in mg gallic acid (GAE) per 100 g of brewed coffee. The highest value was obtained for 100% Arabica ground coffee prepared in a coffee percolator using unfiltered water at a temperature of 100 °C: 657.3 ± 23 mg GAE/100 g of infusion. High values were also observed for infusions prepared in a coffee machine, where the highest TPC value was 363.8 ± 28 mg GAE/100 g for ground Arabica. In turn, the lowest TPC was obtained for Arabica green coffee in opaque packaging, brewed with filtered water at a temperature of 100 °C: 19.5 ± 1 mg GAE/100 g of infusion. No significant effect of temperature and water type on the TPC within one type of coffee was observed. Due to its high content of phenolic compounds, Arabica coffee brewed in a coffee percolator should be the most popular choice for coffee drinkers.


2020 ◽  
Vol 10 (19) ◽  
pp. 6914
Author(s):  
Michał Bialik ◽  
Artur Wiktor ◽  
Katarzyna Rybak ◽  
Dorota Witrowa-Rajchert ◽  
Piotr Latocha ◽  
...  

This study aimed to investigate the impact of convective and vacuum drying performed at different temperatures on the content of bioactive components of kiwiberry. Dried fruits obtained from Geneva and Weiki cultivars were analyzed for total carotenoid content, total phenolic content (TPC), and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. The secondary goal was to establish drying kinetics and to find the best-fitting model for the drying process. The results showed that the highest total carotenoid content was found in Geneva fruits dried by vacuum method and was equal to 39.55–90.27 µg/g dry matter (d.m.). Considering free radical scavenging activity, the best results were also achieved for vacuum dried Geneva cultivar. These samples exhibited EC50 equal to 0.16–0.51 mg d.m./mL and 0.05–0.24 mg d.m./mL as evaluated using DPPH and ABTS assays, respectively. Vacuum drying method usually better preserved the phenolic content of kiwiberry—samples dried at 50 °C did not differ significantly from fresh material. Generally, the shortest drying time was observed for the samples dried at 70 °C regardless of the drying method. Changing the temperature during drying from 80 to 50 and 60 °C did not cause expected benefits regarding chemical property preservation. In most cases, the Midilli et al. model represented the best fit to describe obtained drying kinetics.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Esteban Villamil-Galindo ◽  
Franco Van de Velde ◽  
Andrea M. Piagentini

AbstractThe post-harvest processing of strawberries generates considerable amounts of by-products that consist of the inedible parts of the fruit (sepal, calyx, stem, and non-marketable portion of the fruit), which is an environmental problem for local producers and industries. This study aimed to revalue these kinds of tissues through identifying and quantifying the genotype influence on the total phenolic content, phenolic profile, and the antioxidant activity of the by-products from three strawberry cultivars: ‘Festival’ (FE), ‘San Andreas ‘ (SA), and ‘Camino Real’ (CR). The total phenolic content was determined by the Folin–Ciocalteu method, in-vitro antioxidant activity by the DPPH* radical scavenging method and the phenolic profile by PAD–HPLC. The different genotypes showed significant differences (p < 0.05) in total phenolic content (TPC), FE being the one with the highest TPC (14.97 g of gallic acid equivalents < GAE > /Kg of by-product < R >), followed by SA and CR cultivars. The antioxidant capacity of the SA and FE tissues were similar (p > 0.05) and higher (15.1–16.3 mmol Trolox equivalents < TE > /Kg R) than CR. Eight main phenolic compounds were identified and quantified on the three cultivars. Agrimoniin was the principal polyphenol (0.38–1.56 g/Kg R), and the cultivar FE had the highest concentration. This compound showed the highest correlation coefficient with the antioxidant capacity (R2 0.87; p < 0.001). This study highlighted the impact of the multi-cultivar systems in strawberry production on the bioactive potential and the diversity of secondary metabolites obtained from strawberry agro-industrial by-products at a low cost.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 579 ◽  
Author(s):  
Maria Cristiana Nunes ◽  
Isabel Fernandes ◽  
Inês Vasco ◽  
Isabel Sousa ◽  
Anabela Raymundo

The objective of this work is to increase the nutritional quality of gluten-free (GF) bread by addition of Tetraselmis chuii microalgal biomass, a sustainable source of protein and bioactive compounds. The impact of different levels of T. chuii (0%—Control, 1%, 2% and 4% w/w) on the GF doughs and breads’ structure was studied. Microdough-Lab mixing tests and oscillatory rheology were conducted to evaluate the dough´s structure. Physical properties of the loaves, total phenolic content (Folin-Ciocalteu) and antioxidant capacity (DPPH and FRAP) of the bread extracts were assessed. For the low additions of T. chuii (1% and 2%), a destabilising effect is noticed, expressed by lower dough viscoelastic functions (G’ and G’’) and poor baking results. At the higher level (4%) of microalgal addition, there was a structure recovery with bread volume increase and a decrease in crumb firmness. Moreover, 4% T. chuii bread presented higher total phenolic content and antioxidant capacity when compared to control. Bread with 4% T. chuii seems particularly interesting since a significant increase in the bioactivity and an innovative green appearance was achieved, with a low impact on technological performance, but with lower sensory scores.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Nguyen Phuoc Minh

Pigmented maize (Zea mays L.) is a healthy crop due to its perfect proximates and phytochemicals. Thermal treatment was widely used to enhance phytochemical constituents in different kinds of crops. This research evaluated the impact of temperature (100, 115, 130 °C) and duration (10, 15, 20 min) in roasting to anthocyanin, total phenolic content and antioxidant capacity of pigmented maize. Results showed that thermal treatment at 115 °C in 10 min significantly improved anthocyanin in pigmented maize; however, this content would be lower at higher temperatures or prolonged exposing time. Meanwhile, total phenolic content and antioxidant capacity in the pigmented maize were recorded at the highest level when being roasted at 100 oC for 10 min. This research proved that phytochemical constituents and antioxidant capacity inside the pigmented maize would be seriously damaged at high temperatures and extended duration in roasting. By this, producers should pay more attention to thermal conditions in roasting.


Sign in / Sign up

Export Citation Format

Share Document