Moisture spectral characteristics and hyperspectral inversion of fly ash-filled reconstructed soil

Author(s):  
Ke Xia ◽  
Shasha Xia ◽  
Qiang Shen ◽  
Bin Yang ◽  
Qiang Song ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3888
Author(s):  
Xinyu Kuang ◽  
Yingui Cao ◽  
Gubai Luo ◽  
Yuhan Huang

The purpose of this study was to reveal that reconstructed soil composed of different types and proportions of materials has different effects on the growth of Melilotus officinalis, and to determine the most suitable formula of reconstructed soil materials to use for soil replacement. Using topsoil, coal gangue, fly ash, and rock and soil stripping materials from Shengli Mining Area of Inner Mongolia as raw materials, stratified and mixed pot experiments were carried out in a greenhouse using different proportions of each material. The differences in the aboveground biomass, leaf width, plant height, and root length of Melilotus officinalis plants in pot experiments were then compared using analysis of variance. The results showed that using different combinations of materials in different proportions affected the growth status of Melilotus officinalis, and their effects on biomass were greater than their effects on plant height, root length, and leaf width. When topsoil, coal gangue, and rock and soil stripping materials were mixed at a ratio of 3:3:4, respectively, the biomass of Melilotus officinalis increased by nearly 30% compared with that of plants potted in pure topsoil. When the content of coal gangue was controlled to be 30%, the content of fly ash was below 10%, and the content of rock and soil stripping materials was below 40%, the reconstructed soil conditions clearly promoted the growth of Melilotus officinalis. Coal gangue, rock and soil stripping materials, and fly ash can thus be used as substitutes for topsoil. Mixing soil reconstruction materials in the optimal proportion can solve the scarcity of topsoil in the grassland mining areas in the study region and, at the same time, can effectively improve the utilization of solid waste in this mining area.


Author(s):  
L. L. Sutter ◽  
G. R. Dewey ◽  
J. F. Sandell

Municipal waste combustion typically involves both energy recovery as well as volume reduction of municipal solid waste prior to landfilling. However, due to environmental concerns, municipal waste combustion (MWC) has not been a widely accepted practice. A primary concern is the leaching behavior of MWC ash when it is stored in a landfill. The ash consists of a finely divided fly ash fraction (10% by volume) and a coarser bottom ash (90% by volume). Typically, MWC fly ash fails tests used to evaluate leaching behavior due to high amounts of soluble lead and cadmium species. The focus of this study was to identify specific lead bearing phases in MWC fly ash. Detailed information regarding lead speciation is necessary to completely understand the leaching behavior of MWC ash.


1997 ◽  
Vol 9 (6) ◽  
pp. 541-565 ◽  
Author(s):  
Cheryl R. Killingsworth ◽  
Francesca Alessandrini ◽  
G. G. Krishna Murthy ◽  
Paul J. Catalano ◽  
Joseph D. Paulauskis ◽  
...  

2021 ◽  
Vol 33 (3) ◽  
pp. 04021001
Author(s):  
Maheshbabu Jallu ◽  
Sireesh Saride ◽  
Arul Arulrajah ◽  
Subrahmanyam Challapalli ◽  
Robert Evans
Keyword(s):  
Fly Ash ◽  

Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Author(s):  
Shubham N. Dadgal ◽  
Shrikant Solanke

In modern days for structures in coastal areas it has been observed that the premature structural failures are occurs due to corrosion of the reinforcements of the designed structural member. The corrosion causes the structural damage which in turn leads to reduction in the bearing capacity of the concerned structural members. The aim of this study was to study the effect of partial replacement of fly ash to minimize the corrosion effect. Beams were designed and corroded by using artificial method known accelerated corrosion method. The beams were then tested for flexural and bond strength. Also the weight loss of the reinforced bars was been determined using electrical resistivity method. The fly ash will replace by 10% and 15%.The strength will calculate at varying percentage of corrosion at 10% and 15%. Beams will cast at M25 grade concrete. The flexural strength will test by using UTM and the bond strength will calculate using pullout test.


Sign in / Sign up

Export Citation Format

Share Document