scholarly journals Alpha amylase, alpha glucosidase and glycation inhibitory activity of Moringa oleifera extracts

2020 ◽  
Vol 128 ◽  
pp. 225-230 ◽  
Author(s):  
U.F. Magaji ◽  
O. Sacan ◽  
R. Yanardag
Author(s):  
P. Reka ◽  
Thahira Banu A. ◽  
M. Seethalakshmi

Objective: The present work was to investigate the alpha amylase and alpha-glucosidase inhibitory activity of the selected edible seaweeds.Methods: The seaweeds namely Acanthophora spicifera, Gracilaria corticata, Gracilaria edulis, Ulva lactuca and Ulva reticulata were selected for this study. Six and eight hours of ethanol and aqueous extract were used for the estimation of alpha amylase using DNS method and alpha-glucosidase inhibition activity.Results: The study reported that the solvent from ethanol and aqueous in eight hours of extraction showed a higher inhibitory activity than six hours of extraction. Maximum of 89.1±0.96 and 79.55±3.08 percent of alpha-amylase and alpha-glucosidase inhibition activity were detected in the eight hours of aqueous extract (0.5 ml) of Ulva reticulata and Gracilaria edulis respectively. All the selected edible seaweeds had significant differences (p<0.05) in alpha amylase and alpha glucosidase inhibition activity between the selected seaweeds with different extracts.Conclusion: It was concluded that all the selected edible seaweeds have the potential to act as a potent inhibitor of the carbohydrate hydrolyzing enzyme. Thus, it was clear from the study that seaweeds incorporated in small amounts in the dishes consumed in the daily diet can bring a control on postprandial blood glucose level.


Author(s):  
Kushagra Dubey ◽  
Raghvendra Dubey ◽  
Revathi Gupta ◽  
Arun Gupta

Background: Diosmin is a flavonoid obtained from the citrus fruits of the plants. Diosmin has blood lipid lowering activities, antioxidant activity, enhances venous tone and microcirculation, protects capillaries, mainly by reducing systemic oxidative stress. Objective: The present study demonstrates the potential of Diosmin against the enzymes aldose reductase, α-glucosidase, and α-amylase involved in diabetes and its complications by in vitro evaluation and reverse molecular docking studies. Method: The assay of aldose reductase was performed by using NADPH as starting material and DL-Glyceraldehyde as a substrate. DNS method was used for alpha amylase inhibition and in alpha glucosidase inhibitory activity p-nitrophenyl glucopyranoside (pNPG) was used as substrate. The reverse molecular docking studies was performed by using Molegro software (MVD) with grid resolution of 30 Å. Result: Diosmin shows potent inhibitory effect against aldose reductase (IC50:333.88±0.04 µg/mL), α-glucosidase (IC50:410.3±0.01 µg/mL) and α-amylase (IC50: 404.22±0.02 µg/mL) respectively. The standard drugs shows moderate inhibitory activity for enzymes. The MolDock Score of Diosmin was -224.127 against aldose reductase, -168.17 against α-glucosidase and -176.013 against α-amylase respectively, which was much higher than standard drugs. Conclusion: From the result it was concluded that diosmin was a potentially inhibitor of aldose reductase, alpha amylase and alpha glucosidase enzymes then the standard drugs and it will be helpful in the management of diabetes and its complications. This will also be benevolent to decrease the socio economical burden on the middle class family of the society.


2020 ◽  
Vol 2 (1) ◽  
pp. 27

Nephelium mutabile is a tropical plant of Sapindaceae family which originated from the Malay Peninsula and used in traditional medicine. This study focused on investigating the antioxidant and anti-diabetic properties of Nephelium mutabile leaves. The aqueous methanol (80%) crude extract of Nephelium mutabile leaves were fractionated via gravity column chromatography and thin-layer chromatography. A total of 17 fractions were obtained from column chromatography and subsequently pooled together to yield eight fractions. The pooled fractions were examined for their antioxidant properties via DPPH assay, Folin-Ciocalteu assay, and aluminum chloride colorimetric assay and tested for anti-diabetic properties using alpha-amylase and alpha-glucosidase inhibitory assay. DPPH assay showed that fraction 8 has the highest free radical scavenging activity (EC50 =88.0 μg/mL) followed by fraction 7 (EC50 =225.0 μg/mL). Fraction 8 showed the highest total phenolic and flavonoid content (221.1 μg GAE/mg, 222.4 μg QE/mg) respectively followed by fraction 7 (166.5 μg GAE/mg, 213.9 μg QE/mg) respectively. The most potent alpha-amylase inhibitory activity is observed in fraction 8 with an IC50 value of (41.0 μg/mL) followed by fraction 7 (90.6 μg/mL). In the alpha-glucosidase inhibitory activity, fraction 8 with IC50 value 160.0 μg/mL followed by fraction 7 with IC50 value 50.6 μg/mL showed the best inhibition activity. In conclusion, Nephelium mutabile leaves showed potential antioxidant, and anti-diabetic properties and fractions 8 and 7 should be the focus of future studies.


Author(s):  
S. GURUPRIYA ◽  
L. CATHRINE

Objective: The purpose of this study is to isolate and characterize the andrographolide and betulin from methanolic leaves extract of Andrographis echioides and also used to evaluate the alpha-amylase and alpha-glucosidase inhibitory activity of isolated compounds using in silico docking studies. Methods: The isolation was done using column chromatography using gradient mobile phase. Structural elucidation was carried out on the basis of spectral analysis. In this view, andrographolide and betulin were prepared for the docking evaluation. In silico docking studies were carried out using a recent version of Auto Dock 4.2, which has the basic principle of Lamarckian genetic algorithm. Results: On the basis of the spectral data, the compounds have been established as andrographolide and betulin are being reported from this plant for the first time. The result showed that the andrographolide showed a binding affinity for amylase: (-7.9 kcal/mol) and for glucosidase (-7.2 kcal/mol) while betulin showed (-8.6 kcal/mol) and (-5.2 kcal/mol), respectively. Conclusion: Therefore, it is suggested that isolated compounds andrographolide and betulin contributed excellent α-amylase and α-glucosidase inhibitory activity because of its structural parameters. Thus, these isolated compounds can be effectively used as drugs for treating diabetes which is predicted on the basis of docking scores.


Author(s):  
Gejalakshmi S. ◽  
Harikrishnan N. ◽  
Anas S. Mohameid

Background: Diabetes mellitus is a metabolic condition characterized by elevated blood glucose levels in the bloodstream. It occurs due to the inadequate amount of insulin secreted in the body or resistance of insulin receptors. Objective: In the present study, for its effect on alpha-amylase and alpha-glucosidase enzymes, Oroxylum indicuma flavone glycoside was assessed using in-vitro assays by removing the respective enzymes from whole wheat and barley in conjunction with in-silico analysis. Method: in-vitro alpha amylase inhibitory activity and in-vitro alpha glucosidase inhibitory activity was performed using acarbose as a standard drug. The molecular docking study was performed using Schrodinger (Maestro V 11.5) software. The parameters glide score, Lipinski rule for drug likeliness, bioactive scoring and ADME properties were assessed in the docking study. In addition, baicalein's antioxidant function was assessed using DPPH assay, nitric oxide scavenging activity. The cytotoxicity of Oroxylum indicumwas evaluated using the Brine shrimp lethality assay. Results: The alpha-amylase assay performed showed IC50 value of 48.40 µg/ml for Oroxylum indicumwhereas alpha-glucosidase assay showed an IC50 value of 16.03 µg/ml. Oroxylum indicumshows the glide score of-5.565 with 5EOF and glide score of -5.339 with 5NN8 in the molecular docking study. The highest percentage of DPPH radical scavenging activity and nitrous oxide scavenging activity were found to be.27% at160 µg/ml and 50.02% at the concentrations of 160 µg/ml respectively. Conclusion: Based on further in vivo and clinical trials, Oroxylum indicummay be used for the management of hyperglycaemia.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1149
Author(s):  
Ninon G. E. R. Etsassala ◽  
Jelili A. Badmus ◽  
Jeanine L. Marnewick ◽  
Emmanuel I. Iwuoha ◽  
Felix Nchu ◽  
...  

Diabetes mellitus (DM) is one of the most dangerous metabolic diseases with a high rate of mortality worldwide. It is well known that insulin resistance and deficiency in insulin production from pancreatic β-cells are the main characteristics of DM. Due to the detrimental side effects of the current treatment, there is a considerable need to develop new effective antidiabetic drugs, especially alpha-glucosidase and alpha-amylase inhibitors with lesser adverse effects. These inhibitors are known to be directly involved in the delay of carbohydrate digestion, resulting in a reduction of glucose absorption rate and, consequently, reducing the postprandial rise of plasma glucose, which can reduce the risk of long-term diabetes complications. Furthermore, natural products are well-known sources for the discovery of new bioactive compounds that can serve as scaffolds for drug discovery, including that of new antidiabetic drugs. The phytochemical investigation of Salvia aurita collected from Hogobach Pass, Eastern Cape Province, South Africa (SA), yielded four known abietane diterpenes namely carnosol (1), rosmanol (2), 7-methoxyrosmanol (3), 12-methoxycarnosic acid (4), and one flavonoid named 4,7-dimethylapigenin (5). Structural characterization of these isolated compounds was conducted using 1 and 2D NMR, in comparison with reported spectroscopic data. These compounds are reported for the first time from S. aurita. The biological evaluation of the isolated compound against alpha-glucosidase exhibited strong inhibitory activities for 3 and 2 with the half maximal inhibitory concentration (IC50) values of 4.2 ± 0.7 and 16.4 ± 1.1 µg/mL respectively, while 4 and 1 demonstrated strong alpha-amylase inhibitory activity amongst the isolated compounds with IC50 values of 16.2 ± 0.3 and 19.8 ± 1.4 µg/mL. Molecular docking analysis confirms the strong inhibitory activity of 3 against alpha-glucosidase. Additionally, excellent antioxidant capacities were displayed by 2, 1, and 3, respectively, with oxygen radical absorbance capacity (ORAC) (25.79 ± 0.01; 23.96 ± 0.01; 23.94 ± 0.02) mM Trolox equivalent (TE)/g; 1 and 2 as ferric-ion reducing antioxidant power (FRAP) (3.92 ± 0.002; 1.52 ± 0.002) mM ascorbic acid equivalent (AAE)/g; 5 and 2 as Trolox equivalent absorbance capacity (TEAC) (3.19 ± 0.003; 2.06 ± 0.003) mM TE/g. The methanolic extract of S. aurita is a rich source of abietane diterpenes with excellent antioxidant and antidiabetic activities that can be useful to modulate oxidative stress and might possibly be excellent candidates for the management of diabetes. This is the first scientific report on the phytochemical isolation and biological evaluation of the alpha-glucosidase and alpha-amylase inhibitory activities of Salvia aurita.


2007 ◽  
Vol 54 (12) ◽  
pp. 563-567 ◽  
Author(s):  
Yusuke Saito ◽  
Shigenori Nishi ◽  
Hiroshi Koaze ◽  
Kazunori Hironaka ◽  
Michiyuki Kojima

2019 ◽  
Vol 9 (6) ◽  
pp. 102-109 ◽  
Author(s):  
Durgeshnandani Sinha ◽  
Trilochan Satapathy ◽  
Parag Jain ◽  
Jhakeshwar Prasad Chandel ◽  
Divya Sahu ◽  
...  

Objective: The present study was performed to determine in vitro antidiabetic effect of neohesperidin. To evaluate inhibitory effect of neohesperidin on α-amylase and α-glucosidase diabetes causing enzyme. Methods and Materials: Invitro carbohydrate metabolizing enzyme based inhibitory methods were used to determine antidiabetic effect of neohesperidin. Alpha (α)-amylase inhibitory assay was performed using different sources i.e. wheat alpha (α)-amylase enzyme, salivary alpha (α)-amylase and fungal alpha (α)-amylase assay. Alpha (α)-glucosidase inhibitory assay was performed using alpha (α)-glucosidase (B. stearothermophil), alpha (α)-glucosidase rat intestine and alpha (α)-glucosidase from baker’s yeast. Sucrase inhibitory assay from rat small intestine. Result: Neohesperidin possess a potent anti-diabetic by significantly inhibiting alpha amylase activity. Conclusion: It was concluded that enzyme inhibitory activity of neohesperidin shown a significantly higher inhibitory activity on alpha-amylase in comparision to alpha-glucosidase & Sucrase enzymes. Keywords: Neohespiridin, acarbose, alpha-amylase, alpha-glucosidase


Author(s):  
Ninon G.E.R Etsassala ◽  
Jelili A. Badmus ◽  
Jeanine L. Marnewick ◽  
Felix Nchu ◽  
Ahmed A. Hussein

Diabetes mellitus (DM) is one of the most dangerous metabolic diseases with high rate of mortality worldwide. It is well known that insulin resistance and deficiency in insulin production from pancreatic &beta;-cells are the main characteristic of DM. Due to the detrimental side effects of the current treatment, there is a considerable need to develop new effective antidiabetic drugs, especially alpha-glucosidase and alpha-amylase inhibitors with lesser adverse effects. These inhibitors are known to be directly involved in the delay of carbohydrate digestion, resulting in a reduction of glucose absorption rate and consequently reduce the post-prandial raise of plasma glucose, which can reduce the risk of long-term diabetes complications. Hence, natural products are well-known sources for the discovery of new scaffold for drugs discovery, including new antidiabetic drugs. The phytochemical investigation of Salvia aurita collected from Hogobach pass, Eastern Cape, South Africa (SA), yielded four known abietane diterpenes namely carnosol (1), rosmanol (2), 7-methoxyrosmanol (3), 12-methoxycarnosic acid (4) and one flavonoid named 4,7-dimethylapigenin (5). Structural characterization of these isolated compounds was conducted using 1 and 2D NMR, in comparison with reported spectroscopic data. These compounds are reported for the first time from S. aurita. The biological evaluation of the isolated compound against alpha-glucosidase exhibited strong inhibitory activities for 3 and 2 with IC50 values of 4.2 &plusmn; 0.7 and 16.4 &plusmn; 1.1 &micro;g/mL respectively, while 4 and 1 demonstrated strong alpha-amylase inhibitory activity amongst the isolated compounds with IC50 of 16.2 &plusmn; 0.3 and 19.8 &plusmn; 1.4 &micro;g/mL. Molecular docking analysis confirms strong inhibitory activity of 3 against alpha-glucosidase. Additionally, excellent antioxidant capacities were displayed by 2, 1 and 3 respectively as ORAC (25789.9 &plusmn; 10.5; 23961.8 &plusmn; 14.1; 23939.3 &plusmn; 2.4) &micro;M TE/g; 1 and 2 as FRAP (3917.8 &plusmn; 2.1; 1522.3 &plusmn; 0.9) &micro;M AAE/g; 5 and 2 as TEAC (3190.4 &plusmn; 2.8; 2055.0 &plusmn; 2.6) &micro;M TE/g. The methanolic extract of S. aurita is a rich source of abietane diterpenes with excellent antioxidant and anti-diabetic activities that can be useful to modulate oxidative stress, and might possibly be excellent candidates for the management of diabetes. This is the first scientific report on the phytochemical isolation and biological evaluation of alpha-glucosidase and alpha-amylase inhibitory activities of Salvia aurita.


Sign in / Sign up

Export Citation Format

Share Document