scholarly journals In Vitro Antidiabetic Effect of Neohesperidin

2019 ◽  
Vol 9 (6) ◽  
pp. 102-109 ◽  
Author(s):  
Durgeshnandani Sinha ◽  
Trilochan Satapathy ◽  
Parag Jain ◽  
Jhakeshwar Prasad Chandel ◽  
Divya Sahu ◽  
...  

Objective: The present study was performed to determine in vitro antidiabetic effect of neohesperidin. To evaluate inhibitory effect of neohesperidin on α-amylase and α-glucosidase diabetes causing enzyme. Methods and Materials: Invitro carbohydrate metabolizing enzyme based inhibitory methods were used to determine antidiabetic effect of neohesperidin. Alpha (α)-amylase inhibitory assay was performed using different sources i.e. wheat alpha (α)-amylase enzyme, salivary alpha (α)-amylase and fungal alpha (α)-amylase assay. Alpha (α)-glucosidase inhibitory assay was performed using alpha (α)-glucosidase (B. stearothermophil), alpha (α)-glucosidase rat intestine and alpha (α)-glucosidase from baker’s yeast. Sucrase inhibitory assay from rat small intestine. Result: Neohesperidin possess a potent anti-diabetic by significantly inhibiting alpha amylase activity. Conclusion: It was concluded that enzyme inhibitory activity of neohesperidin shown a significantly higher inhibitory activity on alpha-amylase in comparision to alpha-glucosidase & Sucrase enzymes. Keywords: Neohespiridin, acarbose, alpha-amylase, alpha-glucosidase

Author(s):  
NANTAPORN DINLAKANONT ◽  
CHANIDA PALANUVEJ ◽  
NIJSIRI RUANGRUNGSI

Objective: Starch metabolizing enzyme inhibitors are able to retard postprandial glucose absorption. This study aimed to investigate the in vitro inhibitory activities of alpha-glucosidase and alpha-amylase of three Malvaceous weeds i.e. Sidaacuta Burm. f., Abutilon indicum (Linn.) Sweet and Malvastrumcoromandelianum (Linn.) Garcke. Methods: The stems, roots and leaves of S. acuta, A. indicum and M. coromandelianum were sequentially extracted in dichloromethane and methanol, respectively. All fractions were tested for the inhibitory activities on yeast alpha-glucosidase, rat intestinal alpha-glucosidase and porcine alpha-amylase. p-Nitrophenyl-α-D-glucopyranoside and 2-chloro-4 nitrophenol-α-D- maltotrioside were used as the substrate for glucosidase and amylase respectively. Results: The dichloromethane fraction of the roots and stems from A. indicum and dichloromethane as well as methanolic fractions of the stems of M. coromandelianum could inhibit yeast alpha-glucosidase compared to 1-deoxynojirimycin with the IC50 of 0.36, 0.45, 0.48, 0.48 and 0.58 mg/ml respectively. A. indicum root methanolic fraction had the highest inhibitory effect on rat alpha-glucosidase activity compared to 1-deoxynojirimycin with the IC50 of 0.08 and 0.11 mg/ml respectively. M. coromandelianum, the dichloromethane fraction of roots and the methanolic fraction of stems, showed the strongest effect on alpha-amylase inhibition compared to acarbose with the IC50 of 0.07, 0.07 and 2.7 mg/ml, respectively. Conclusion: S. acuta, A. indicum and M. coromandelianum dichloromethane and methanolic fractions of the root, stem and leaf parts demonstrated an appreciable inhibitory activity on alpha-amylase from porcine, alpha-glucosidase from Saccharomyces cerevisiae and from rat intestine compared to 1-deoxynojirimycin and acarbose.


2020 ◽  
Vol 10 (3) ◽  
pp. 31-35
Author(s):  
R ARATHY ◽  
K MURUGAN ◽  
KV DINESH BABU ◽  
GS MANOJ

Diabetes is a notorious and growing clinical and public health issue. The International Diabetes Federation assumes that 592 million had diabetes by 2035 and that by 2040 the number will increase to 642 million. Cardiovascular corollary accounts for four million deaths annually attributable to diabetes. Evidence reveals that certain glucose-lowering phytochemicals can improve vascular outcomes with type 2 diabetes, which, together with better understanding of using multiple therapies concurrently, offers opportunities for beneficial personalization of medication regimens. Anthocyanins are coloured pigments and are natural antioxidants. Keeping this in focus, this study was undertaken to evaluate the in vitro antidiabetic activity in the petals of wild Impatiens balsamina L. The anthocyanin was extracted from floral petals of wild balsam species and purified to homogeneity using chromatographic techniques. Evaluation of in vitro antidiabetic properties of anthocyanin extract revealed a dose-dependent increase in the inhibitory effect on the alpha-glucosidase (200 μg/ml) and alpha-amylase enzymes (500 μg/ml) and was comparable with the standard acarbose drug (189 μg/ml and 50 μg/ml). These results indicated that anthocyanin could be used as a source of functional food and nutraceuticals. This information from wild species will be useful in finding more potent antidiabetic principle from the natural resources for the clinical development of antidiabetic therapeutics. Future studies are planned to substantiate the antidiabetic power of anthocyanin using in vivo animal models. Keywords: Alpha amylase, alpha glucosidase, diabetes, herbal remedies, Impatiens balsamina L.


Author(s):  
Sushant A Shengule ◽  
Sanjay Mishra ◽  
Shweta Bodhale

 Objective: The present study was initiated to screen the hydroethanolic bark extract for α-amylase inhibitory activity and standardization of the Terminalia arjuna for polyphenolic phytochemicals using high-performance liquid chromatography-photo diode array (HPLC-PDA) method.Methods: The T. arjuna bark sample was extracted with ethanol: water (70:30 v/v) using Soxhlet extraction. A Dionex P680 HPLC system was used to acquire chromatograms. The screening of extract of T. arjuna bark has performed for in vitro α-amylase inhibitory assay. Each experiment was repeated 3 times. All values were expressed mean ± standard deviation.Results: The content of arjunetin, arjungenin, gallic acid, ellagic acid, and quercetin was 0.47, 8.22, 2.443, 7.901, and 3.20 mg/g, respectively, in a hydroethanolic extract of T. arjuna. The hydroethanolic extract of T. arjuna bark and acarbose has shown an inhibitory activity with an IC50 value 145.90 and 62.35 μg/mL, respectively.Conclusion: The hydroethanolic extract T. arjuna bark demonstrates α-amylase inhibitory activity due to a synergistic effect of the phytochemical constituents present in it. This study suggests that one of the mechanisms of this plant for antidiabetic activity is through the inhibition of α-amylase enzyme.


Author(s):  
Kushagra Dubey ◽  
Raghvendra Dubey ◽  
Revathi Gupta ◽  
Arun Gupta

Background: Diosmin is a flavonoid obtained from the citrus fruits of the plants. Diosmin has blood lipid lowering activities, antioxidant activity, enhances venous tone and microcirculation, protects capillaries, mainly by reducing systemic oxidative stress. Objective: The present study demonstrates the potential of Diosmin against the enzymes aldose reductase, α-glucosidase, and α-amylase involved in diabetes and its complications by in vitro evaluation and reverse molecular docking studies. Method: The assay of aldose reductase was performed by using NADPH as starting material and DL-Glyceraldehyde as a substrate. DNS method was used for alpha amylase inhibition and in alpha glucosidase inhibitory activity p-nitrophenyl glucopyranoside (pNPG) was used as substrate. The reverse molecular docking studies was performed by using Molegro software (MVD) with grid resolution of 30 Å. Result: Diosmin shows potent inhibitory effect against aldose reductase (IC50:333.88±0.04 µg/mL), α-glucosidase (IC50:410.3±0.01 µg/mL) and α-amylase (IC50: 404.22±0.02 µg/mL) respectively. The standard drugs shows moderate inhibitory activity for enzymes. The MolDock Score of Diosmin was -224.127 against aldose reductase, -168.17 against α-glucosidase and -176.013 against α-amylase respectively, which was much higher than standard drugs. Conclusion: From the result it was concluded that diosmin was a potentially inhibitor of aldose reductase, alpha amylase and alpha glucosidase enzymes then the standard drugs and it will be helpful in the management of diabetes and its complications. This will also be benevolent to decrease the socio economical burden on the middle class family of the society.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1594-1599
Author(s):  
Nagaraju Jesetti ◽  
Rajasekhar Reddy Alavala ◽  
Subhakar Raju Rapaka ◽  
Umasankar Kulandaivelu ◽  
Koteswara Rao GSN

Tradescantia spathacea Swartz belongs to the genus  Commelinaceae, a tropical tree used in many countries as an herbal drug for the care of diabetic patients. The aim of this study was to examine anti-diabetic activity of the Tradescantia spathacea Swartz methanolic extract (METSW) and the in-vitro activity of α-amylase, and α-glucosidase was carried out.  METSW compared with acarbose inhibition of the α-amylase and α-glucosidase enzyme, METSW exhibited IC50 less than 100μg/mL would be considered as healthy. The METSW showed IC50 66.22 ± 0.52μg/mL α-amylase activity, acarbose revealed an IC50 of 83.25 ± 1.28μg/mL. METSW demonstrated IC50 levels of  85.37 ± 0.72 μg/mL (y= 0.095x+41.89) inhibition of  the α-Glucosidase enzymes.  METSW at 400 mg/kg greatly decreased the region under the blood glucose level curve in a typical rat test for oral glucose tolerance. The single dose of the extract decreased dramatically from  211 mg/dl to 89.22 mg/dl at 400 mg/kg  METSW in the alloxan induced diabetic model. METSW possesses strong antidiabetic activity in vivo  and in vitro. Besides, the extract has also been shown to have a significant inhibitory activity of α-amylase and α-glucosidase which may lead to its anti-hyperglycemic function when used in diabetic patients. 


Author(s):  
Gejalakshmi S. ◽  
Harikrishnan N. ◽  
Anas S. Mohameid

Background: Diabetes mellitus is a metabolic condition characterized by elevated blood glucose levels in the bloodstream. It occurs due to the inadequate amount of insulin secreted in the body or resistance of insulin receptors. Objective: In the present study, for its effect on alpha-amylase and alpha-glucosidase enzymes, Oroxylum indicuma flavone glycoside was assessed using in-vitro assays by removing the respective enzymes from whole wheat and barley in conjunction with in-silico analysis. Method: in-vitro alpha amylase inhibitory activity and in-vitro alpha glucosidase inhibitory activity was performed using acarbose as a standard drug. The molecular docking study was performed using Schrodinger (Maestro V 11.5) software. The parameters glide score, Lipinski rule for drug likeliness, bioactive scoring and ADME properties were assessed in the docking study. In addition, baicalein's antioxidant function was assessed using DPPH assay, nitric oxide scavenging activity. The cytotoxicity of Oroxylum indicumwas evaluated using the Brine shrimp lethality assay. Results: The alpha-amylase assay performed showed IC50 value of 48.40 µg/ml for Oroxylum indicumwhereas alpha-glucosidase assay showed an IC50 value of 16.03 µg/ml. Oroxylum indicumshows the glide score of-5.565 with 5EOF and glide score of -5.339 with 5NN8 in the molecular docking study. The highest percentage of DPPH radical scavenging activity and nitrous oxide scavenging activity were found to be.27% at160 µg/ml and 50.02% at the concentrations of 160 µg/ml respectively. Conclusion: Based on further in vivo and clinical trials, Oroxylum indicummay be used for the management of hyperglycaemia.


Aim: The present study was designed to investigate the in vitro inhibitory potential of Euphorbia hirta root extract on alpha-amylase and alpha glucosidase enzymes. Materials and Methods: Alcoholic extract of Euphorbia hirta was subjected to inhibitory effect of alpha-amylase and alpha-glucosidase using specific standard in vitro procedure. Results: The results revealed that extract successfully inhibited the activity of both enzymes in an in vitro model. The alcoholic root extract of Euphorbia hirta inhibited the alpha amylase and alpha glucosidase enzymes as 79.73 ± 0.18% and 81.35 ± 0.12% respectively. Conclusion: The present study showed that, the alcoholic extract showed a significant inhibitory effect on alpha amylase and alpha glucosidase enzymes, thus validating the traditional use of the plant.


2008 ◽  
Vol 55 (2) ◽  
pp. 391-398 ◽  
Author(s):  
Rammohan Subramanian ◽  
M Zaini Asmawi ◽  
Amirin Sadikun

There has been an enormous interest in the development of alternative medicines for type 2 diabetes, specifically screening for phytochemicals with the ability to delay or prevent glucose absorption. The goal of the present study was to provide in vitro evidence for potential inhibition of alpha-glucosidase and alpha-amylase enzymes, followed by a confirmatory in vivo study on rats to generate a stronger biochemical rationale for further studies on the ethanolic extract of Andrographis paniculata and andrographolide. The extract showed appreciable alpha-glucosidase inhibitory effect in a concentration-dependent manner (IC(50)=17.2+/-0.15 mg/ml) and a weak alpha-amylase inhibitory activity (IC(50)=50.9+/-0.17 mg/ml). Andrographolide demonstrated a similar (IC(50)=11.0+/-0.28 mg/ml) alpha-glucosidase and alpha-amylase inhibitory activity (IC(50)=11.3+/-0.29 mg/ml). The positive in vitro enzyme inhibition tests paved way for confirmatory in vivo studies. The in vivo studies demonstrated that A. paniculata extract significantly (P


2018 ◽  
Vol 5 (3) ◽  
pp. 103-112 ◽  
Author(s):  
Khadija Bouabid ◽  
Fatima Lamchouri ◽  
Hamid Toufik ◽  
Karima Sayah ◽  
Yahia Cherrah ◽  
...  

Diabetes is a chronic condition which is increasingly progressing throughout the world. To treat it, several methods are used, among which is medicinal plants that still have an unknown mechanism of action. The objective of this work is to evaluate the in vitro hypoglycemic effect of the extracts of the underground part of Atractylis gummifera, a member of Asteraceae used in traditional Moroccan medicine. A phytochemical study of the aqueous extracts (decocted, infused and macerated) and organic extracts (methanol, methanol macerate, chloroformic, ethyl acetate and petroleum ether), and a phytochemical screening of the different secondary metabolites was done. The antidiabetic power of the extracts of A. gummifera by testing the inhibitory activity of ?-amylase, ?-glucosidase and ?-galactosidase, which are enzymes responsible for the digestion of polysaccharides was determined. The extracts of A. gummifera are very rich in flavonoids and tannins, and are inhibitory to?-amylase and ?-glucosidase, mainly the macerate of methanol with IC50 values of 0.557 ± 0.013 and 0.743 ± 0.017 mg / mL respectively. Higher ?-galactosidase inhibitory potential than quercetin was observed for aqueous macerates and methanol with IC50 values of 2.23 ± 0.012 and 2.443 ± 0.071 mg / mL respectively. The extracts of A. gummifera possess a significant inhibitory activity of the alpha amylase and alpha glucosidase and beta-galactosidase enzymes, in particular the macerate of methanol followed by the aqueous macerate, among the eight extracts tested.


Sign in / Sign up

Export Citation Format

Share Document