Congeneric savanna-forest species have similar reproductive phenologies

2022 ◽  
Vol 144 ◽  
pp. 347-354
Author(s):  
João Pedro Machado de Oliveira ◽  
Klécia Gili Massi ◽  
Davi Rodrigo Rossatto
Keyword(s):  
2009 ◽  
Vol 160 (11) ◽  
pp. 334-340 ◽  
Author(s):  
Pierre Mollet ◽  
Niklaus Zbinden ◽  
Hans Schmid

Results from the monitoring programs of the Swiss Ornithological Institute show that the breeding populations of several forest species for which deadwood is an important habitat element (black woodpecker, great spotted woodpecker, middle spotted woodpecker, lesser spotted woodpecker, green woodpecker, three-toed woodpecker as well as crested tit, willow tit and Eurasian tree creeper) have increased in the period 1990 to 2008, although not to the same extent in all species. At the same time the white-backed woodpecker extended its range in eastern Switzerland. The Swiss National Forest Inventory shows an increase in the amount of deadwood in forests for the same period. For all the mentioned species, with the exception of green and middle spotted woodpecker, the growing availability of deadwood is likely to be the most important factor explaining this population increase.


2019 ◽  
Vol 75 ◽  
pp. 01003 ◽  
Author(s):  
Egor Dmitriev ◽  
Vladimir Kozoderov ◽  
Sergey Donskoy ◽  
Petr Melnik ◽  
Anton Sokolov

A method for automated processing high spatial resolution satellite images is proposed to retrieve inventory and bioproductivity parameters of forest stands. The method includes effective learning classifiers, inverse modeling, and regression modeling of the estimated parameters. Spectral and texture features are used to classify forest species. The results of test experiments for the selected area of Savvatievskoe forestry (Russia, Tver region) are presented. Accuracy estimates obtained using ground-based measurements demonstrate the effectiveness of using the proposed techniques to automate the process of updating information for the State Forest Inventory program of Russia.


Author(s):  
Fernando Yuri da Silva Reis ◽  
Fabrina Bolzan Martins ◽  
Roger Rodrigues Torres ◽  
Gabriel Wilson Lorena Florêncio ◽  
Jefferson Martiniano Cassemiro ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 349
Author(s):  
Andrés Baietto ◽  
Jorge Hernández ◽  
Amabelia del Pino

The replacement of native pasture by exotic commercial forest species is an infrequent situation worldwide. In these systems, a new component is introduced, forest litter, which constitutes one of the main ways of incorporating carbon into the soil–plant system. The present work seeks to establish a methodological approach to study the dynamics of litter production and decomposition in an integrated way. The general objective was to characterize and compare the litter production dynamics in 14-year-old Eucalyptus grandis Hill ex Maiden and Pinus taeda L. commercial plantations. During two years, seasonal evaluations of fall, decomposition and accumulation of litter were carried out in stands of both species. In turn, the contribution of carbon from forest species to the soil through isotopic analysis techniques was quantified. Litterfall in E. grandis showed maximums during the spring of the first year and in the spring and summer of the second. In P. taeda, the maximums occurred in summer of the first year and in autumn of the second. In relation to the decomposition rate, the results based on short periods of evaluation between 15 and 21 months did not show differences between species, nor for the different moments of beginning of the evaluation, obtaining average values of 0.0369 month−1 for E. grandis and 0.0357 month−1 for P. taeda. In turn, both the decomposition rate of the material as a whole and the estimates of accumulated biomass in equilibrium state did not show significant differences between the species. Additionally, there was a relevant incorporation of carbon into the soil by forest species, fundamentally in the first few centimeters, substituting an important proportion of the carbon inherited by the original cover of native pastures. Finally, it is necessary to specify that the scope of the findings obtained is greatly limited by the sample size used in this study.


2020 ◽  
Vol 12 (20) ◽  
pp. 3360
Author(s):  
Jessica Esteban ◽  
Ronald E. McRoberts ◽  
Alfredo Fernández-Landa ◽  
José Luis Tomé ◽  
Miguel Marchamalo

Forest/non-forest and forest species maps are often used by forest inventory programs in the forest estimation process. For example, some inventory programs establish field plots only on lands corresponding to the forest portion of a forest/non-forest map and use species-specific area estimates obtained from those maps to support the estimation of species-specific volume (V) totals. Despite the general use of these maps, the effects of their uncertainties are commonly ignored with the result that estimates might be unreliable. The goal of this study is to estimate the effects of the uncertainty of forest species maps used in the sampling and estimation processes. Random forest (RF) per-pixel predictions were used with model-based inference to estimate V per unit area for the six main forest species of La Rioja, Spain. RF models for predicting V were constructed using field plot information from the Spanish National Forest Inventory and airborne laser scanning data. To limit the prediction of V to pixels classified as one of the main forest species assessed, a forest species map was constructed using Landsat and auxiliary information. Bootstrapping techniques were implemented to estimate the total uncertainty of the V estimates and accommodated both the effects of uncertainty in the Landsat forest species map and the effects of plot-to-plot sampling variability on training data used to construct the RF V models. Standard errors of species-specific total V estimates increased from 2–9% to 3–22% when the effects of map uncertainty were incorporated into the uncertainty assessment. The workflow achieved satisfactory results and revealed that the effects of map uncertainty are not negligible, especially for open-grown and less frequently occurring forest species for which greater variability was evident in the mapping and estimation process. The effects of forest map uncertainty are greater for species-specific area estimation than for the selection of field plots used to calibrate the RF model. Additional research to generalize the conclusions beyond Mediterranean to other forest environments is recommended.


2020 ◽  
Vol 13 (1) ◽  
pp. 222-228 ◽  
Author(s):  
Carlos Roberto Sette Jr ◽  
Thammi Queuri Gomes da Cunha ◽  
Ademilson Coneglian ◽  
Ana Larissa Santiago Hansted ◽  
Diego Aleixo da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document