scholarly journals A Model-Based Volume Estimator that Accounts for Both Land Cover Misclassification and Model Prediction Uncertainty

2020 ◽  
Vol 12 (20) ◽  
pp. 3360
Author(s):  
Jessica Esteban ◽  
Ronald E. McRoberts ◽  
Alfredo Fernández-Landa ◽  
José Luis Tomé ◽  
Miguel Marchamalo

Forest/non-forest and forest species maps are often used by forest inventory programs in the forest estimation process. For example, some inventory programs establish field plots only on lands corresponding to the forest portion of a forest/non-forest map and use species-specific area estimates obtained from those maps to support the estimation of species-specific volume (V) totals. Despite the general use of these maps, the effects of their uncertainties are commonly ignored with the result that estimates might be unreliable. The goal of this study is to estimate the effects of the uncertainty of forest species maps used in the sampling and estimation processes. Random forest (RF) per-pixel predictions were used with model-based inference to estimate V per unit area for the six main forest species of La Rioja, Spain. RF models for predicting V were constructed using field plot information from the Spanish National Forest Inventory and airborne laser scanning data. To limit the prediction of V to pixels classified as one of the main forest species assessed, a forest species map was constructed using Landsat and auxiliary information. Bootstrapping techniques were implemented to estimate the total uncertainty of the V estimates and accommodated both the effects of uncertainty in the Landsat forest species map and the effects of plot-to-plot sampling variability on training data used to construct the RF V models. Standard errors of species-specific total V estimates increased from 2–9% to 3–22% when the effects of map uncertainty were incorporated into the uncertainty assessment. The workflow achieved satisfactory results and revealed that the effects of map uncertainty are not negligible, especially for open-grown and less frequently occurring forest species for which greater variability was evident in the mapping and estimation process. The effects of forest map uncertainty are greater for species-specific area estimation than for the selection of field plots used to calibrate the RF model. Additional research to generalize the conclusions beyond Mediterranean to other forest environments is recommended.

2012 ◽  
Vol 123 ◽  
pp. 443-456 ◽  
Author(s):  
Terje Gobakken ◽  
Erik Næsset ◽  
Ross Nelson ◽  
Ole Martin Bollandsås ◽  
Timothy G. Gregoire ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Marius Hauglin ◽  
Johannes Rahlf ◽  
Johannes Schumacher ◽  
Rasmus Astrup ◽  
Johannes Breidenbach

Abstract Background The Norwegian forest resource map (SR16) maps forest attributes by combining national forest inventory (NFI), airborne laser scanning (ALS) and other remotely sensed data. While the ALS data were acquired over a time interval of 10 years using various sensors and settings, the NFI data are continuously collected. Aims of this study were to analyze the effects of stratification on models linking remotely sensed and field data, and assess the accuracy overall and at the ALS project level. Materials and methods The model dataset consisted of 9203 NFI field plots and data from 367 ALS projects, covering 17 Mha and 2/3 of the productive forest in Norway. Mixed-effects regression models were used to account for differences among ALS projects. Two types of stratification were used to fit models: 1) stratification by the three main tree species groups spruce, pine and deciduous resulted in species-specific models that can utilize a satellite-based species map for improving predictions, and 2) stratification by species and maturity class resulted in stratum-specific models that can be used in forest management inventories where each stand regularly is visually stratified accordingly. Stratified models were compared to general models that were fit without stratifying the data. Results The species-specific models had relative root-mean-squared errors (RMSEs) of 35%, 34%, 31%, and 12% for volume, aboveground biomass, basal area, and Lorey’s height, respectively. These RMSEs were 2–7 percentage points (pp) smaller than those of general models. When validating using predicted species, RMSEs were 0–4 pp. smaller than those of general models. Models stratified by main species and maturity class further improved RMSEs compared to species-specific models by up to 1.8 pp. Using mixed-effects models over ordinary least squares models resulted in a decrease of RMSE for timber volume of 1.0–3.9 pp., depending on the main tree species. RMSEs for timber volume ranged between 19%–59% among individual ALS projects. Conclusions The stratification by tree species considerably improved models of forest structural variables. A further stratification by maturity class improved these models only moderately. The accuracy of the models utilized in SR16 were within the range reported from other ALS-based forest inventories, but local variations are apparent.


2021 ◽  
Author(s):  
Marius Hauglin ◽  
Johannes Rahlf ◽  
Johannes Schumacher ◽  
Rasmus Astrup ◽  
Johannes Breidenbach

Abstract Background The Norwegian forest resource map SR16 combines national forest inventory (NFI) and airborne laser scanning (ALS) data. While the ALS data were acquired over a time interval of 10 years using various sensors and settings, the NFI data are continuously collected. Aims of this study were to analyze the effects of stratification on models linking remotely sensed and field data, and assess the accuracy overall and at the ALS project level. Material and methods The model dataset consisted of 9203 NFI field plots and data from 367 ALS projects, covering 17 Mha and ⅔ of the productive forest in Norway. Mixed-effects regression models were used to account for differences among ALS projects. Two types of stratification were used to fit models: 1) strata by the three main tree species groups spruce, pine and deciduous resulted in species-specific models that can utilize a satellite-based species map for improving predictions, and 2) a stratification by species and maturity class resulted in stratum-specific models that can be used in forest management inventories where each stand regularly is stratified accordingly. Stratified models were compared to general models that were fit without stratifying the data. Results The species-specific models had relative root-mean-squared errors (RMSEs) of 35, 34, 31, and 12% for volume, aboveground biomass, basal area, and Lorey’s height, respectively. These RMSEs were 2-7 percentage points (pp) smaller than those of general models. When validating using predicted species, RMSEs were 0-4 pp smaller than those of general models. Models stratified by main species and maturity class further improved RMSEs compared to species-specific models by up to 1.8 pp. Using mixed-effects models over ordinary least squares models resulted in a decrease of RMSE for timber volume of 1.0 – 3.9 pp, depending on the main tree species. RSMEs for timber volume ranged between 19 – 59% among individual ALS projects.Conclusions The stratification by tree species considerably improved models of forest structural variables. A further stratification by maturity class improved these models only moderately. The accuracy of the models utilized in SR16 were within the range reported from other ALS-based forest inventories, but local variations are apparent.


2009 ◽  
Vol 160 (11) ◽  
pp. 334-340 ◽  
Author(s):  
Pierre Mollet ◽  
Niklaus Zbinden ◽  
Hans Schmid

Results from the monitoring programs of the Swiss Ornithological Institute show that the breeding populations of several forest species for which deadwood is an important habitat element (black woodpecker, great spotted woodpecker, middle spotted woodpecker, lesser spotted woodpecker, green woodpecker, three-toed woodpecker as well as crested tit, willow tit and Eurasian tree creeper) have increased in the period 1990 to 2008, although not to the same extent in all species. At the same time the white-backed woodpecker extended its range in eastern Switzerland. The Swiss National Forest Inventory shows an increase in the amount of deadwood in forests for the same period. For all the mentioned species, with the exception of green and middle spotted woodpecker, the growing availability of deadwood is likely to be the most important factor explaining this population increase.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 308
Author(s):  
Chiung Ko ◽  
Seunghyun Lee ◽  
Jongsu Yim ◽  
Donggeun Kim ◽  
Jintaek Kang

In recent years, light detection and ranging (LiDAR) has been increasingly utilized to estimate forest resources. This study was conducted to identify the applicability of a LiDAR sensor for such estimations by comparing data on a tree’s position, height, and diameter at breast height (DBH) obtained using the sensor with those by existing forest inventory methods for a Cryptomeria japonica forest in Jeju Island, South Korea. For this purpose, a backpack personal laser scanning device (BPLS, Greenvalley International, Model D50) was employed in a protected forest, where cutting is not allowed, as a non-invasive means, simultaneously assessing the device’s field applicability. The data collected by the sensor were divided into seven different pathway variations, or “patterns” to consider the density of the sample plots and enhance the efficiency. The accuracy of estimating the variables of each tree was then assessed. The time spent acquiring and processing real-time data was also analyzed for each method, as well as total time and the time required for each measurement. The findings showed that the rate of detection of standing trees by LiDAR was 100%. Additionally, a high statistical accuracy was observed in pattern 5 (DBH: RMSE 1.22 cm, bias—0.90 cm, Height: RMSE 1.66 m, bias—1.18 m) and pattern 7 (DBH: RMSE 1.22 cm, bias—0.92 cm, Height: RMSE 1.48 m, bias—1.23 m) compared to the results from the typical inventory method. A range of 115–162.5 min/ha was required to process the data using the LiDAR, while 322.5–567.5 min was required for the typical inventory method. Thus, the application of a backpack personal LiDAR can lead to higher efficiency when conducting a forest resource inventory in a coniferous plantation with understory vegetation. Further research in various stands is necessary to confirm the efficiency of using backpack personal laser scanning.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Johannes Schumacher ◽  
Marius Hauglin ◽  
Rasmus Astrup ◽  
Johannes Breidenbach

Abstract Background The age of forest stands is critical information for forest management and conservation, for example for growth modelling, timing of management activities and harvesting, or decisions about protection areas. However, area-wide information about forest stand age often does not exist. In this study, we developed regression models for large-scale area-wide prediction of age in Norwegian forests. For model development we used more than 4800 plots of the Norwegian National Forest Inventory (NFI) distributed over Norway between latitudes 58° and 65° N in an 18.2 Mha study area. Predictor variables were based on airborne laser scanning (ALS), Sentinel-2, and existing public map data. We performed model validation on an independent data set consisting of 63 spruce stands with known age. Results The best modelling strategy was to fit independent linear regression models to each observed site index (SI) level and using a SI prediction map in the application of the models. The most important predictor variable was an upper percentile of the ALS heights, and root mean squared errors (RMSEs) ranged between 3 and 31 years (6% to 26%) for SI-specific models, and 21 years (25%) on average. Mean deviance (MD) ranged between − 1 and 3 years. The models improved with increasing SI and the RMSEs were largest for low SI stands older than 100 years. Using a mapped SI, which is required for practical applications, RMSE and MD on plot level ranged from 19 to 56 years (29% to 53%), and 5 to 37 years (5% to 31%), respectively. For the validation stands, the RMSE and MD were 12 (22%) and 2 years (3%), respectively. Conclusions Tree height estimated from airborne laser scanning and predicted site index were the most important variables in the models describing age. Overall, we obtained good results, especially for stands with high SI. The models could be considered for practical applications, although we see considerable potential for improvements if better SI maps were available.


2009 ◽  
Vol 24 (2) ◽  
pp. 95-102 ◽  
Author(s):  
Hans-Erik Andersen

Abstract Airborne laser scanning (also known as light detection and ranging or LIDAR) data were used to estimate three fundamental forest stand condition classes (forest stand size, land cover type, and canopy closure) at 32 Forest Inventory Analysis (FIA) plots distributed over the Kenai Peninsula of Alaska. Individual tree crown segment attributes (height, area, and species type) were derived from the three-dimensional LIDAR point cloud, LIDAR-based canopy height models, and LIDAR return intensity information. The LIDAR-based crown segment and canopy cover information was then used to estimate condition classes at each 10-m grid cell on a 300 × 300-m area surrounding each FIA plot. A quantitative comparison of the LIDAR- and field-based condition classifications at the subplot centers indicates that LIDAR has potential as a useful sampling tool in an operational forest inventory program.


2018 ◽  
Vol 206 ◽  
pp. 254-259 ◽  
Author(s):  
Ronald E. McRoberts ◽  
Qi Chen ◽  
Dale D. Gormanson ◽  
Brian F. Walters

Sign in / Sign up

Export Citation Format

Share Document