Cryo-electron tomography: gaining insight into cellular processes by structural approaches

2011 ◽  
Vol 21 (5) ◽  
pp. 670-677 ◽  
Author(s):  
Tal Yahav ◽  
Tal Maimon ◽  
Einat Grossman ◽  
Idit Dahan ◽  
Ohad Medalia
2019 ◽  
Vol 201 (13) ◽  
Author(s):  
Shiwei Zhu ◽  
Maren Schniederberend ◽  
Daniel Zhitnitsky ◽  
Ruchi Jain ◽  
Jorge E. Galán ◽  
...  

ABSTRACTThe bacterial flagellum is a sophisticated self-assembling nanomachine responsible for motility in many bacterial pathogens, includingPseudomonas aeruginosa,Vibriospp., andSalmonella enterica. The bacterial flagellum has been studied extensively in the model systemsEscherichia coliandSalmonella entericaserovar Typhimurium, yet the range of variation in flagellar structure and assembly remains incompletely understood. Here, we used cryo-electron tomography and subtomogram averaging to determinein situstructures of polar flagella inP. aeruginosaand peritrichous flagella inS. Typhimurium, revealing notable differences between these two flagellar systems. Furthermore, we observed flagellar outer membrane complexes as well as many incomplete flagellar subassemblies, which provide additional insight into mechanisms underlying flagellar assembly and loss in bothP. aeruginosaandS. Typhimurium.IMPORTANCEThe bacterial flagellum has evolved as one of the most sophisticated self-assembled molecular machines, which confers locomotion and is often associated with virulence of bacterial pathogens. Variation in species-specific features of the flagellum, as well as in flagellar number and placement, results in structurally distinct flagella that appear to be adapted to the specific environments that bacteria encounter. Here, we used cutting-edge imaging techniques to determine high-resolutionin situstructures of polar flagella inPseudomonas aeruginosaand peritrichous flagella inSalmonella entericaserovar Typhimurium, demonstrating substantial variation between flagella in these organisms. Importantly, we observed novel flagellar subassemblies and provided additional insight into the structural basis of flagellar assembly and loss in bothP. aeruginosaandS. Typhimurium.


2020 ◽  
Vol 26 (3) ◽  
pp. 413-418
Author(s):  
Jamie S. Depelteau ◽  
Gert Koning ◽  
Wen Yang ◽  
Ariane Briegel

AbstractVisualizing biological structures and cellular processes in their native state is a major goal of many scientific laboratories. In the past 20 years, the technique of preserving samples by vitrification has greatly expanded, specifically for use in cryogenic electron microscopy (cryo-EM). Here, we report on improvements in the design and use of a portable manual cryogenic plunge freezer that is intended for use in laboratories that are not equipped for the cryopreservation of samples. The construction of the instrument is economical, can be produced by a local machine shop without specialized equipment, and lowers the entry barriers for newcomers with a reliable alternative to costly commercial equipment. The improved design allows for successful freezing of isolated proteins for single particle analysis as well as bacterial cells for cryo-electron tomography. With this instrument, groups will be able to prepare vitreous samples whenever and wherever necessary, which can then be imaged at local or national cryo-EM facilities.


2020 ◽  
Vol 219 (9) ◽  
Author(s):  
Danielle M. Paul ◽  
Judith Mantell ◽  
Ufuk Borucu ◽  
Jennifer Coombs ◽  
Katherine J. Surridge ◽  
...  

Microtubules and filamentous (F-) actin engage in complex interactions to drive many cellular processes from subcellular organization to cell division and migration. This is thought to be largely controlled by proteins that interface between the two structurally distinct cytoskeletal components. Here, we use cryo-electron tomography to demonstrate that the microtubule lumen can be occupied by extended segments of F-actin in small molecule–induced, microtubule-based, cellular projections. We uncover an unexpected versatility in cytoskeletal form that may prompt a significant development of our current models of cellular architecture and offer a new experimental approach for the in situ study of microtubule structure and contents.


2019 ◽  
Author(s):  
Danielle M Paul ◽  
Judith Mantell ◽  
Ufuk Borucu ◽  
Jennifer Coombs ◽  
Katherine J Surridge ◽  
...  

AbstractMicrotubules and filamentous (F-) actin engage in complex interactions to drive many cellular processes from subcellular organisation to cell division and migration. This is thought to be largely controlled by proteins that interface between the two structurally distinct cytoskeletal components. Here, we use cryo-electron tomography to demonstrate that the microtubule lumen can be occupied by extended segments of F-actin in small-molecule induced, microtubule-based cellular projections. We uncover an unexpected versatility in cytoskeletal form that may prompt a significant development of our current models of cellular architecture and offer a new experimental approach for the in-situ study of microtubule structure and contents.


Cells ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 57 ◽  
Author(s):  
Miriam Weber ◽  
Matthias Wojtynek ◽  
Ohad Medalia

The architecture of protein assemblies and their remodeling during physiological processes is fundamental to cells. Therefore, providing high-resolution snapshots of macromolecular complexes in their native environment is of major importance for understanding the molecular biology of the cell. Cellular structural biology by means of cryo-electron tomography (cryo-ET) offers unique insights into cellular processes at an unprecedented resolution. Recent technological advances have enabled the detection of single impinging electrons and improved the contrast of electron microscopic imaging, thereby significantly increasing the sensitivity and resolution. Moreover, various sample preparation approaches have paved the way to observe every part of a eukaryotic cell, and even multicellular specimens, under the electron beam. Imaging of macromolecular machineries at high resolution directly within their native environment is thereby becoming reality. In this review, we discuss several sample preparation and labeling techniques that allow the visualization and identification of macromolecular assemblies in situ, and demonstrate how these methods have been used to study eukaryotic cellular landscapes.


2009 ◽  
Vol 123 (1) ◽  
pp. 7-12 ◽  
Author(s):  
K. Ben-Harush ◽  
T. Maimon ◽  
I. Patla ◽  
E. Villa ◽  
O. Medalia

2021 ◽  
Vol 7 (13) ◽  
pp. eabf8598 ◽  
Author(s):  
Natalya Leneva ◽  
Oleksiy Kovtun ◽  
Dustin R. Morado ◽  
John A. G. Briggs ◽  
David J. Owen

Retromer is a master regulator of cargo retrieval from endosomes, which is critical for many cellular processes including signaling, immunity, neuroprotection, and virus infection. The retromer core (VPS26/VPS29/VPS35) is present on cargo-transporting, tubular carriers along with a range of sorting nexins. Here, we elucidate the structural basis of membrane tubulation and coupled cargo recognition by metazoan and fungal retromer coats assembled with the non–Bin1/Amphiphysin/Rvs (BAR) sorting nexin SNX3 using cryo–electron tomography. The retromer core retains its arched, scaffolding structure but changes its mode of membrane recruitment when assembled with different SNX adaptors, allowing cargo recognition at subunit interfaces. Thus, membrane bending and cargo incorporation can be modulated to allow retromer to traffic cargoes along different cellular transport routes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rodrigo V. Honorato ◽  
Panagiotis I. Koukos ◽  
Brian Jiménez-García ◽  
Andrei Tsaregorodtsev ◽  
Marco Verlato ◽  
...  

Structural biology aims at characterizing the structural and dynamic properties of biological macromolecules at atomic details. Gaining insight into three dimensional structures of biomolecules and their interactions is critical for understanding the vast majority of cellular processes, with direct applications in health and food sciences. Since 2010, the WeNMR project (www.wenmr.eu) has implemented numerous web-based services to facilitate the use of advanced computational tools by researchers in the field, using the high throughput computing infrastructure provided by EGI. These services have been further developed in subsequent initiatives under H2020 projects and are now operating as Thematic Services in the European Open Science Cloud portal (www.eosc-portal.eu), sending >12 millions of jobs and using around 4,000 CPU-years per year. Here we review 10 years of successful e-infrastructure solutions serving a large worldwide community of over 23,000 users to date, providing them with user-friendly, web-based solutions that run complex workflows in structural biology. The current set of active WeNMR portals are described, together with the complex backend machinery that allows distributed computing resources to be harvested efficiently.


Author(s):  
Bruno Martins ◽  
Simona Sorrentino ◽  
Wen-Lu Chung ◽  
Meltem Tatli ◽  
Ohad Medalia ◽  
...  

SummaryThe actin cytoskeleton plays a fundamental role in numerous cellular processes, such as cell motility, cytokinesis, and adhesion to the extracellular matrix. Revealing the polarity of individual actin filaments in cells, would foster an unprecedented understanding of cytoskeletal processes and their associated mechanical forces. Cryo-electron tomography provides the means for high-resolution structural imaging of cells. However, the low signal-to-noise ratio of cryo-tomograms obscures the high frequencies and therefore the polarity of actin filaments cannot be directly measured. Here, we developed an approach that enables to determine the polarity of actin filaments in cellular cryo-tomograms. We applied it to reveal the actin polarity distribution in focal adhesions, and show a linear relation between actin polarity and distance from the apical boundary of the adhesion site.


Sign in / Sign up

Export Citation Format

Share Document