scholarly journals In SituStructures of Polar and Lateral Flagella Revealed by Cryo-Electron Tomography

2019 ◽  
Vol 201 (13) ◽  
Author(s):  
Shiwei Zhu ◽  
Maren Schniederberend ◽  
Daniel Zhitnitsky ◽  
Ruchi Jain ◽  
Jorge E. Galán ◽  
...  

ABSTRACTThe bacterial flagellum is a sophisticated self-assembling nanomachine responsible for motility in many bacterial pathogens, includingPseudomonas aeruginosa,Vibriospp., andSalmonella enterica. The bacterial flagellum has been studied extensively in the model systemsEscherichia coliandSalmonella entericaserovar Typhimurium, yet the range of variation in flagellar structure and assembly remains incompletely understood. Here, we used cryo-electron tomography and subtomogram averaging to determinein situstructures of polar flagella inP. aeruginosaand peritrichous flagella inS. Typhimurium, revealing notable differences between these two flagellar systems. Furthermore, we observed flagellar outer membrane complexes as well as many incomplete flagellar subassemblies, which provide additional insight into mechanisms underlying flagellar assembly and loss in bothP. aeruginosaandS. Typhimurium.IMPORTANCEThe bacterial flagellum has evolved as one of the most sophisticated self-assembled molecular machines, which confers locomotion and is often associated with virulence of bacterial pathogens. Variation in species-specific features of the flagellum, as well as in flagellar number and placement, results in structurally distinct flagella that appear to be adapted to the specific environments that bacteria encounter. Here, we used cutting-edge imaging techniques to determine high-resolutionin situstructures of polar flagella inPseudomonas aeruginosaand peritrichous flagella inSalmonella entericaserovar Typhimurium, demonstrating substantial variation between flagella in these organisms. Importantly, we observed novel flagellar subassemblies and provided additional insight into the structural basis of flagellar assembly and loss in bothP. aeruginosaandS. Typhimurium.

2019 ◽  
Vol 8 (42) ◽  
Author(s):  
Clara Marin ◽  
Giuseppe D’Auria ◽  
Llúcia Martínez-Priego ◽  
Francisco Marco-Jiménez

Monophasic Salmonella enterica subsp. enterica serovar Typhimurium is one of the most common zoonotic pathogens. Salmonella species reside in a wide variety of hosts, including wild animals. Thus, we report here the genome sequences of 12 monophasic S. Typhimurium strains isolated from healthy wild vultures to gain better insight into their epidemiology and host-pathogen interactions.


2016 ◽  
Vol 199 (3) ◽  
Author(s):  
Zhuan Qin ◽  
Wei-ting Lin ◽  
Shiwei Zhu ◽  
Aime T. Franco ◽  
Jun Liu

ABSTRACT Helicobacter pylori is a bacterial pathogen that can cause many gastrointestinal diseases, including ulcers and gastric cancer. A unique chemotaxis-mediated motility is critical for H. pylori to colonize in the human stomach and to establish chronic infection, but the underlying molecular mechanisms are not well understood. Here, we employ cryo-electron tomography (cryo-ET) to reveal detailed structures of the H. pylori cell envelope, including the sheathed flagella and chemotaxis arrays. Notably, H. pylori possesses a distinctive periplasmic cage-like structure with 18-fold symmetry. We propose that this structure forms a robust platform for recruiting 18 torque generators, which likely provide the higher torque needed for swimming in high-viscosity environments. We also reveal a series of key flagellar assembly intermediates, providing structural evidence that flagellar assembly is tightly coupled with the biogenesis of the membrane sheath. Finally, we determine the structure of putative chemotaxis arrays at the flagellar pole, which have implications for how the direction of flagellar rotation is regulated. Together, our pilot cryo-ET studies provide novel structural insights into the unipolar flagella of H. pylori and lay a foundation for a better understanding of the unique motility of this organism. IMPORTANCE Helicobacter pylori is a highly motile bacterial pathogen that colonizes approximately 50% of the world's population. H. pylori can move readily within the viscous mucosal layer of the stomach. It has become increasingly clear that its unique flagella-driven motility is essential for successful gastric colonization and pathogenesis. Here, we use advanced imaging techniques to visualize novel in situ structures with unprecedented detail in intact H. pylori cells. Remarkably, H. pylori possesses multiple unipolar flagella, which are driven by one of the largest flagellar motors found in bacteria. These large motors presumably provide the higher torque needed by the bacterial pathogens to navigate in the viscous environment of the human stomach.


2018 ◽  
Vol 200 (21) ◽  
Author(s):  
Shiwei Zhu ◽  
Tatsuro Nishikino ◽  
Seiji Kojima ◽  
Michio Homma ◽  
Jun Liu

ABSTRACT The bacterial flagellum has evolved as one of the most remarkable nanomachines in nature. It provides swimming and swarming motilities that are often essential for the bacterial life cycle and pathogenesis. Many bacteria such as Salmonella and Vibrio species use flagella as an external propeller to move to favorable environments, whereas spirochetes utilize internal periplasmic flagella to drive a serpentine movement of the cell bodies through tissues. Here, we use cryo-electron tomography to visualize the polar sheathed flagellum of Vibrio alginolyticus with particular focus on a Vibrio-specific feature, the H-ring. We characterized the H-ring by identifying its two components FlgT and FlgO. We found that the majority of flagella are located within the periplasmic space in the absence of the H-ring, which are different from those of external flagella in wild-type cells. Our results not only indicate the H-ring has a novel function in facilitating the penetration of the outer membrane and the assembly of the external sheathed flagella but also are consistent with the notion that the flagella have evolved to adapt highly diverse needs by receiving or removing accessary genes. IMPORTANCE Flagellum is the major organelle for motility in many bacterial species. While most bacteria possess external flagella, such as the multiple peritrichous flagella found in Escherichia coli and Salmonella enterica or the single polar sheathed flagellum in Vibrio spp., spirochetes uniquely assemble periplasmic flagella, which are embedded between their inner and outer membranes. Here, we show for the first time that the external flagella in Vibrio alginolyticus can be changed as periplasmic flagella by deleting two flagellar genes. The discovery here may provide new insights into the molecular basis underlying assembly, diversity, and evolution of flagella.


2015 ◽  
Vol 198 (4) ◽  
pp. 664-672 ◽  
Author(s):  
Kai Zhang ◽  
Jun Liu ◽  
Nyles W. Charon ◽  
Chunhao Li

ABSTRACTThe Lyme disease spirocheteBorrelia burgdorferihas five putative methyl-accepting chemotaxis proteins (MCPs). In this report, we provide evidence that a hypothetical protein, BB0569, is essential for the chemotaxis ofB. burgdorferi. While BB0569 lacks significant homology to the canonical MCPs, it contains a conserved domain (spanning residues 110 to 170) that is often evident in membrane-bound MCPs such as Tar and Tsr ofEscherichia coli. Unlike Tar and Tsr, BB0569 lacks transmembrane regions and recognizable HAMP and methylation domains and is similar to TlpC, a cytoplasmic chemoreceptor ofRhodobacter sphaeroides. An isogenic mutant ofBB0569constantly runs in one direction and fails to respond to attractants, indicating that BB0569 is essential for chemotaxis. Immunofluorescence, green fluorescent protein (GFP) fusion, and cryo-electron tomography analyses demonstrate that BB0569 localizes at the cell poles and is required for chemoreceptor clustering at the cell poles. Protein cross-linking studies reveal that BB0569 forms large protein complexes with MCP3, indicative of its interactions with other MCPs. Interestingly, analysis ofB. burgdorferimcpmutants shows that inactivation of eithermcp2ormcp3reduces the level of BB0569 substantially and that such a reduction is caused by protein turnover. Collectively, these results demonstrate that the domain composition and function of BB0569 are similar in some respects to those of TlpC but that these proteins are different in their cellular locations, further highlighting that the chemotaxis ofB. burgdorferiis unique and different from theEscherichia coliandSalmonella entericaparadigm.IMPORTANCESpirochete chemotaxis differs substantially from theEscherichia coliandSalmonella entericaparadigm, and the basis for controlling the rotation of the bundles of periplasmic flagella at each end of the cell is unknown. In recent years,Borrelia burgdorferi, the causative agent of Lyme disease, has been used as a model organism to understand spirochete chemotaxis and its role in infectious processes of the disease. In this report, BB0569, a hypothetical protein ofB. burgdorferi, has been investigated by using an approach of genetic, biochemistry, and cryo-electron tomography analyses. The results indicate that BB0569 has a distinct role in chemotaxis that may be unique to spirochetes and represents a novel paradigm.


2017 ◽  
Author(s):  
Benjamin A. Himes ◽  
Peijun Zhang

AbstractMacromolecular complexes are intrinsically flexible and often challenging to purify for structure determination by single particle cryoEM. Such complexes may be studied in situ using cryo-electron tomography combined with sub-tomogram alignment and classification, which in exceptional cases reaches sub-nanometer resolution, yielding insight into structure-function relationships. All maps currently deposited in the EMDB with resolution < 9 Å are from macromolecules that form ordered structural arrays, like viral capsids, which greatly simplifies structural determination. Extending this approach to more common specimens that exhibit conformational or compositional heterogeneity, and may be available in limited numbers, remains challenging. We developed emClarity, a GPU-accelerated image processing package, specifically to address fundamental hurdles to this aim, and demonstrate significant improvements in the resolution of maps compared to those generated using current state-of-the-art software. Furthermore, we devise a novel approach to sub-tomogram classification that reveals functional states not previously observed with the same data.The software is freely available from https://www.github.com/bHimes/emClarityTutorial documentation and videos at https://www.github.com/bHimes/emClarity/wiki


2019 ◽  
Vol 202 (4) ◽  
Author(s):  
Shiwei Zhu ◽  
Tatsuro Nishikino ◽  
Norihiro Takekawa ◽  
Hiroyuki Terashima ◽  
Seiji Kojima ◽  
...  

ABSTRACT The bacterial flagellum is a biological nanomachine that rotates to allow bacteria to swim. For flagellar rotation, torque is generated by interactions between a rotor and a stator. The stator, which is composed of MotA and MotB subunit proteins in the membrane, is thought to bind to the peptidoglycan (PG) layer, which anchors the stator around the rotor. Detailed information on the stator and its interactions with the rotor remains unclear. Here, we deployed cryo-electron tomography and genetic analysis to characterize in situ structure of the bacterial flagellar motor in Vibrio alginolyticus, which is best known for its polar sheathed flagellum and high-speed rotation. We determined in situ structure of the motor at unprecedented resolution and revealed the unique protein-protein interactions among Vibrio-specific features, namely the H ring and T ring. Specifically, the H ring is composed of 26 copies of FlgT and FlgO, and the T ring consists of 26 copies of a MotX-MotY heterodimer. We revealed for the first time a specific interaction between the T ring and the stator PomB subunit, providing direct evidence that the stator unit undergoes a large conformational change from a compact form to an extended form. The T ring facilitates the recruitment of the extended stator units for the high-speed motility in Vibrio species. IMPORTANCE The torque of flagellar rotation is generated by interactions between a rotor and a stator; however, detailed structural information is lacking. Here, we utilized cryo-electron tomography and advanced imaging analysis to obtain a high-resolution in situ flagellar basal body structure in Vibrio alginolyticus, which is a Gram-negative marine bacterium. Our high-resolution motor structure not only revealed detailed protein-protein interactions among unique Vibrio-specific features, the T ring and H ring, but also provided the first structural evidence that the T ring interacts directly with the periplasmic domain of the stator. Docking atomic structures of key components into the in situ motor map allowed us to visualize the pseudoatomic architecture of the polar sheathed flagellum in Vibrio spp. and provides novel insight into its assembly and function.


mBio ◽  
2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Michael Frahm ◽  
Sebastian Felgner ◽  
Dino Kocijancic ◽  
Manfred Rohde ◽  
Michael Hensel ◽  
...  

ABSTRACTIncreasing numbers of cancer cases generate a great urge for new treatment options. Applying bacteria likeSalmonella entericaserovar Typhimurium for cancer therapy represents an intensively explored option. These bacteria have been shown not only to colonize solid tumors but also to exhibit an intrinsic antitumor effect. In addition, they could serve as tumor-targeting vectors for therapeutic molecules. However, the pathogenicS. Typhimurium strains used for tumor therapy need to be attenuated for safe application. Here, lipopolysaccharide (LPS) deletion mutants (ΔrfaL, ΔrfaG, ΔrfaH, ΔrfaD, ΔrfaP, and ΔmsbBmutants) ofSalmonellawere investigated for efficiency in tumor therapy. Of such variants, the ΔrfaDand ΔrfaGdeep rough mutants exhibited the best tumor specificity and lowest pathogenicity. However, the intrinsic antitumor effect was found to be weak. To overcome this limitation, conditional attenuation was tested by complementing the mutants with an inducible arabinose promoter. The chromosomal integration of the respective LPS biosynthesis genes into thearaBADlocus exhibited the best balance of attenuation and therapeutic benefit. Thus, the present study establishes a basis for the development of an applicably cancer therapeutic bacterium.IMPORTANCECancer has become the second most frequent cause of death in industrialized countries. This and the drawbacks of routine therapies generate an urgent need for novel treatment options. Applying appropriately modifiedS. Typhimurium for therapy represents the major challenge of bacterium-mediated tumor therapy. In the present study, we demonstrated thatSalmonellabacteria conditionally modified in their LPS phenotype exhibit a safe tumor-targeting phenotype. Moreover, they could represent a suitable vehicle to shuttle therapeutic compounds directly into cancerous tissue without harming the host.


2008 ◽  
Vol 161 (3) ◽  
pp. 459-468 ◽  
Author(s):  
Roman I. Koning ◽  
Sandra Zovko ◽  
Montserrat Bárcena ◽  
Gert T. Oostergetel ◽  
Henk K. Koerten ◽  
...  

2017 ◽  
Vol 5 (46) ◽  
Author(s):  
Najwa Syahirah Roslan ◽  
Shagufta Jabeen ◽  
Nurulfiza Mat Isa ◽  
Abdul Rahman Omar ◽  
Mohd Hair Bejo ◽  
...  

ABSTRACT Salmonella enterica subsp. enterica serovar Typhimurium is one of several well-categorized Salmonella serotypes recognized globally. Here, we report the whole-genome sequence of S. Typhimurium strain UPM 260, isolated from a broiler chicken.


2012 ◽  
Vol 80 (7) ◽  
pp. 2454-2463 ◽  
Author(s):  
Stephen J. Forbes ◽  
Daniel Martinelli ◽  
Chyongere Hsieh ◽  
Jeffrey G. Ault ◽  
Michael Marko ◽  
...  

ABSTRACTInvasion of intestinal epithelial cells bySalmonella entericaserovar Typhimurium is an energetically demanding process, involving the transfer of effector proteins from invading bacteria into host cells via a specialized organelle known as theSalmonellapathogenicity island 1 (SPI-1) type 3 secretion system (T3SS). By a mechanism that remains poorly understood, entry ofS. Typhimurium into epithelial cells is inhibited by Sal4, a monoclonal, polymeric IgA antibody that binds an immunodominant epitope within the O-antigen (O-Ag) component of lipopolysaccharide. In this study, we investigated how the binding of Sal4 to the surface ofS. Typhimurium influences T3SS activity, bacterial energetics, and outer membrane integrity. We found that Sal4 treatment impaired T3SS-mediated translocon formation and attenuated the delivery of tagged effector proteins into epithelial cells. Sal4 treatment coincided with a partial reduction in membrane energetics and intracellular ATP levels, possibly explaining the impairment in T3SS activity. Sal4's effects on bacterial secretion and energetics occurred concurrently with an increase in O-Ag levels in culture supernatants, alterations in outer membrane permeability, and changes in surface ultrastructure, as revealed by transmission electron microscopy and cryo-electron microscopy. We propose that Sal4, by virtue of its ability to bind and cross-link the O-Ag, induces a form of outer membrane stress that compromises the integrity of theS. Typhimurium cell envelope and temporarily renders the bacterium avirulent.


Sign in / Sign up

Export Citation Format

Share Document