A leaf vein-like hierarchical silver grids transparent electrode towards high-performance flexible electrochromic smart windows

2020 ◽  
Vol 65 (3) ◽  
pp. 225-232
Author(s):  
Teng Li ◽  
Shengyou Li ◽  
Xuyi Li ◽  
Zijie Xu ◽  
Jizhong Zhao ◽  
...  
2020 ◽  
Author(s):  
Ran Li ◽  
Xiaoyuan Ma ◽  
Jianmin Li ◽  
Jun Cao ◽  
Hongze Gao ◽  
...  

Abstract Transition metal oxides (TMO) are promising electrochromic (EC) materials for applications such as smart windows and displays, yet challenge still exists to achieve good flexibility, high coloration efficiency and fast response simultaneously. MXenes (e.g. Ti3C2Tx) and their derived TMOs (e.g. 2D TiO2) are good candidates for high-performance and flexible EC devices because of their 2D nature and the possibility of assembling them into loosely networked structures. Here we demonstrate flexible, fast, and high-coloration-efficiency EC devices based on self-assembled 2D TiO2/Ti3C2Tx heterostructures, with the Ti3C2Tx layer as the transparent electrode, and the 2D TiO2 layer as the EC layer. Benefiting from the well-balanced porosity and connectivity of these assembled nanometer-thick heterostructures, they present fast and efficient ion and electron transport, as well as superior mechanical and electrochemical stability. We further demonstrate large-area flexible devices which could potentially be integrated onto curved and flexible surfaces for future ubiquitous electronics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ran Li ◽  
Xiaoyuan Ma ◽  
Jianmin Li ◽  
Jun Cao ◽  
Hongze Gao ◽  
...  

AbstractTransition metal oxides (TMOs) are promising electrochromic (EC) materials for applications such as smart windows and displays, yet the challenge still exists to achieve good flexibility, high coloration efficiency and fast response simultaneously. MXenes (e.g. Ti3C2Tx) and their derived TMOs (e.g. 2D TiO2) are good candidates for high-performance and flexible EC devices because of their 2D nature and the possibility of assembling them into loosely networked structures. Here we demonstrate flexible, fast, and high-coloration-efficiency EC devices based on self-assembled 2D TiO2/Ti3C2Tx heterostructures, with the Ti3C2Tx layer as the transparent electrode, and the 2D TiO2 layer as the EC layer. Benefiting from the well-balanced porosity and connectivity of these assembled nanometer-thick heterostructures, they present fast and efficient ion and electron transport, as well as superior mechanical and electrochemical stability. We further demonstrate large-area flexible devices which could potentially be integrated onto curved and flexible surfaces for future ubiquitous electronics.


2018 ◽  
Vol 10 (11) ◽  
pp. 9571-9578 ◽  
Author(s):  
Yixiong Ji ◽  
Jun Yang ◽  
Wei Luo ◽  
Linlong Tang ◽  
Xiangxing Bai ◽  
...  

2020 ◽  
Vol 1014 ◽  
pp. 131-136
Author(s):  
Chun Hong Zeng ◽  
Yong Jian Ma ◽  
Bao Shun Zhang ◽  
Ya Meng Xu ◽  
Mei Kong

Broadband ultraviolet (BUV) photodetectors are widely used in military and civil fields. A high performance BUV photodetector based on graphene/β-Ga2O3/GaN heterojunction is proposed and realized by semiconductor micro-fabrication techniques in this paper. The β-Ga2O3 and GaN films are grown by metal organic chemical vapor deposition (MOCVD), and the graphene is also used as a transparent electrode. The device exhibits a broad response band from 230 nm to 368 nm with responsivity exceeding 0.4A/W at -5 V bias voltage and a peak responsivity of 0.53 A/W at 256 nm. These performances can be attributed to the internal gain mechanism of graphene/β-Ga2O3/GaN heterojunction and the optical properties of graphene. Our work provides an efficient method to realize a high-performance BUV photodetector for photoelectric applications.


2020 ◽  
Vol 31 (31) ◽  
pp. 314001 ◽  
Author(s):  
Linlin Shi ◽  
Jingcheng Song ◽  
Ye Zhang ◽  
Guohui Li ◽  
Wenyan Wang ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 218 ◽  
Author(s):  
Duc-Thinh Vuong ◽  
Ha-My Hoang ◽  
Nguyen-Hung Tran ◽  
Hyun-Chul Kim

Copper nanowires (Cu NWs) are a promising alternative to indium tin oxide (ITO), for use as transparent conductors that exhibit comparable performance at a lower cost. Furthermore, Cu NWs are flexible, a property not possessed by ITO. However, the Cu NW-based transparent electrode has a reddish color and tends to deteriorate in ambient conditions due to the oxidation of Cu. In this paper, we propose a pulsed-current (PC) plating method to deposit nickel onto the Cu NWs in order to reduce oxidation over a 30-day period, and to minimize the sheet resistance. Additionally, the effects of the pulse current, duty cycle, and pulse frequency on the performance of the Cu–Ni (copper–nickel) NW films have also been investigated. As a result, the reddish color of the electrode was eliminated, as oxidation was completely suppressed, and the sheet resistance was reduced from 35 Ω/sq to 27 Ω/sq. However, the transmittance decreased slightly from 86% to 76% at a wavelength of 550 nm. The Cu–Ni NW electrodes also exhibited excellent long-term cycling stability after 6000 bending cycles. Our fabricated Cu–Ni electrodes were successfully applied in flexible polymer-dispersed liquid crystal smart windows.


2009 ◽  
Vol 1209 ◽  
Author(s):  
Marie-Isabelle Baraton

AbstractThe field of major applications of transparent conducting oxides (TCOs) continues to expand, thus generating a growing demand for new materials with lower resistivity and higher transparency over extended wavelength ranges. Moreover, p-type TCOs are opening new horizons for high-performance devices based on p-n junctions. Among the most commonly used TCO materials are zinc oxide (ZnO), indium tin oxide (ITO), tin oxide (SnO2), and indium oxide (In2O3). Still, design and synthesis of improved TCO materials leading to a marked increase in conductivity and robustness remain highly desirable while a more detailed understanding of the conductivity mechanisms is critical to further improvement. For example, there is an accelerating effort worldwide by both academia and industry to develop a transparent conductor that can meet or beat the performance of the commonly used ITO at lower costs and with more physical resilience. This article reviews new developments in TCO materials to be used in various applications spanning from photovoltaics to lighting, smart windows, or gas sensors. The financial stakes, far from being negligible in the TCOs market, and the current scientific and technological challenges to be taken up are analyzed.


Sign in / Sign up

Export Citation Format

Share Document