scholarly journals Flexible and High-Performance Electrochromic Devices Enabled by Self-Assembled 2D TiO2/MXene Heterostructures

2020 ◽  
Author(s):  
Ran Li ◽  
Xiaoyuan Ma ◽  
Jianmin Li ◽  
Jun Cao ◽  
Hongze Gao ◽  
...  

Abstract Transition metal oxides (TMO) are promising electrochromic (EC) materials for applications such as smart windows and displays, yet challenge still exists to achieve good flexibility, high coloration efficiency and fast response simultaneously. MXenes (e.g. Ti3C2Tx) and their derived TMOs (e.g. 2D TiO2) are good candidates for high-performance and flexible EC devices because of their 2D nature and the possibility of assembling them into loosely networked structures. Here we demonstrate flexible, fast, and high-coloration-efficiency EC devices based on self-assembled 2D TiO2/Ti3C2Tx heterostructures, with the Ti3C2Tx layer as the transparent electrode, and the 2D TiO2 layer as the EC layer. Benefiting from the well-balanced porosity and connectivity of these assembled nanometer-thick heterostructures, they present fast and efficient ion and electron transport, as well as superior mechanical and electrochemical stability. We further demonstrate large-area flexible devices which could potentially be integrated onto curved and flexible surfaces for future ubiquitous electronics.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ran Li ◽  
Xiaoyuan Ma ◽  
Jianmin Li ◽  
Jun Cao ◽  
Hongze Gao ◽  
...  

AbstractTransition metal oxides (TMOs) are promising electrochromic (EC) materials for applications such as smart windows and displays, yet the challenge still exists to achieve good flexibility, high coloration efficiency and fast response simultaneously. MXenes (e.g. Ti3C2Tx) and their derived TMOs (e.g. 2D TiO2) are good candidates for high-performance and flexible EC devices because of their 2D nature and the possibility of assembling them into loosely networked structures. Here we demonstrate flexible, fast, and high-coloration-efficiency EC devices based on self-assembled 2D TiO2/Ti3C2Tx heterostructures, with the Ti3C2Tx layer as the transparent electrode, and the 2D TiO2 layer as the EC layer. Benefiting from the well-balanced porosity and connectivity of these assembled nanometer-thick heterostructures, they present fast and efficient ion and electron transport, as well as superior mechanical and electrochemical stability. We further demonstrate large-area flexible devices which could potentially be integrated onto curved and flexible surfaces for future ubiquitous electronics.


2015 ◽  
Vol 3 (43) ◽  
pp. 11318-11325 ◽  
Author(s):  
Guangming Nie ◽  
Ling Wang ◽  
Changlong Liu

An ECD based on electrochromic poly(1H-benzo[g]indole) was fabricated. The color of this ECD can switch between green and navy blue with good optical contrast, high coloration efficiency, fast response time, better optical memory and long-term stability.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1136
Author(s):  
Chung-Wen Kuo ◽  
Jui-Cheng Chang ◽  
Jeng-Kuei Chang ◽  
Sheng-Wei Huang ◽  
Pei-Ying Lee ◽  
...  

A 1,3-bis(carbazol-9-yl)benzene derivative (BPBC) was synthesized and its related homopolymer (PBPBC) and copolymers (P(BPBC-co-BT), P(BPBC-co-CDT), and P(BPBC-co-CDTK)) were prepared using electrochemical polymerization. Investigations of polymeric spectra showed that PBPBC film was grey, iron-grey, yellowish-grey, and greyish-green from the neutral to the oxidized state. P(BPBC-co-BT), P(BPBC-co-CDT), and P(BPBC-co-CDTK) films showed multicolor transitions from the reduced to the oxidized state. The transmittance change (DT) of PBPBC, P(BPBC-co-BT), P(BPBC-co-CDT), and P(BPBC-co-CDTK) films were 29.6% at 1040 nm, 44.4% at 1030 nm, 22.3% at 1050 nm, and 41.4% at 1070 nm. The coloration efficiency (η) of PBPBC and P(BPBC-co-CDTK) films were evaluated to be 140.3 cm2 C−1 at 1040 nm and 283.7 cm2 C−1 at 1070 nm, respectively. A P(BPBC-co-BT)/PEDOT electrochromic device (ECD) showed a large DT (36.2% at 625 nm) and a fast response time (less than 0.5 s), whereas a P(BPBC-co-CDTK)/PEDOT ECD revealed a large η (534.4 cm2 C–1 at 610 nm) and sufficient optical circuit memory.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shiyou Liu ◽  
Ping Zhang ◽  
Jianjian Fu ◽  
Congyuan Wei ◽  
Guofa Cai

Electrochromic devices (ECDs) have a broad range of application prospects in many important energy efficient optoelectronic fields, such as smart windows, anti-glare rearview mirrors, low-energy displays, and infrared camouflage. However, there are some factors restricting their development, such as low coloration efficiency, slow switching speed, and poor cycling stability. Coordination polymer (CP) is a promising active material for the fabrication of high-performance ECD because of its ultrahigh coloration efficiency, fast switching speed, and excellent cycling stability. In this review, current advances of CP in energy efficient ECDs are comprehensively summarized and evaluated. Specifically, the effects of composition, coordination bonding, and microstructure of the bipyridine- and terpyridine-based CP on EC performances are introduced and discussed in detail. Then, the challenges and prospects of this booming field are proposed. Finally, the broad application prospects of the CPs-based EC materials and the corresponding devices are also demonstrated, which hold numerous revolutionary effects over our daily life. Hopefully, this review would provide useful guidance and further promote progress on the electrochromic and other optoelectronic fields.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 874
Author(s):  
Soyoung Bae ◽  
Youngno Kim ◽  
Jeong Min Kim ◽  
Jung Hyun Kim

MXene, a 2D material, is used as a filler to manufacture polymer electrolytes with high ionic conductivity because of its unique sheet shape, large specific surface area and high aspect ratio. Because MXene has numerous -OH groups on its surface, it can cause dehydration and condensation reactions with poly(4-styrenesulfonic acid) (PSSA) and consequently create pathways for the conduction of cations. The movement of Grotthuss-type hydrogen ions along the cation-conduction pathway is promoted and a high ionic conductivity can be obtained. In addition, when electrolytes composed of a conventional acid or metal salt alone is applied to an electrochromic device (ECD), it does not bring out fast response time, high coloration efficiency and transmittance contrast simultaneously. Therefore, dual-cation electrolytes are designed for high-performance ECDs. Bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSI) was used as a source of lithium ions and PSSA crosslinked with MXene was used as a source of protons. Dual-Cation electrolytes crosslinked with MXene was applied to an indium tin oxide-free, all-solution-processable ECD. The effect of applying the electrolyte to the device was verified in terms of response time, coloration efficiency and transmittance contrast. The ECD with a size of 5 × 5 cm2 showed a high transmittance contrast of 66.7%, fast response time (8 s/15 s) and high coloration efficiency of 340.6 cm2/C.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Y. Djaoued ◽  
S. Balaji ◽  
R. Brüning

Recent developments in the synthesis of transition metal oxides in the form of porous thin films have opened up opportunities in the construction of electrochromic devices with enhanced properties. In this paper, synthesis, characterization and electrochromic applications of porous WO3thin films with different nanocrystalline phases, such as hexagonal, monoclinic, and orthorhombic, are presented. Asymmetric electrochromic devices have been constructed based on these porous WO3thin films. XRD measurements of the intercalation/deintercalation of Li+into/from the WO3layer of the device as a function of applied coloration/bleaching voltages show systematic changes in the lattice parameters associated with structural phase transitions in LixWO3. Micro-Raman studies show systematic crystalline phase changes in the spectra of WO3layers during Li+ion intercalation and deintercalation, which agree with the XRD data. These devices exhibit interesting optical modulation (up to ~70%) due to intercalation/deintercalation of Li ions into/from the WO3layer of the devices as a function of applied coloration/bleaching voltages. The obtained optical modulation of the electrochromic devices indicates that, they are suitable for applications in electrochromic smart windows.


2020 ◽  
Vol 65 (3) ◽  
pp. 225-232
Author(s):  
Teng Li ◽  
Shengyou Li ◽  
Xuyi Li ◽  
Zijie Xu ◽  
Jizhong Zhao ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 821 ◽  
Author(s):  
Keon-Woo Kim ◽  
Yong Min Kim ◽  
Xinlin Li ◽  
Taehwa Ha ◽  
Se Hyun Kim ◽  
...  

Solution-processable electrochromic (EC) materials have been investigated widely for various applications, such as smart windows, reflective displays, and sensors. Among them, tungsten trioxide (WO3) is an attractive material because it can form a film via a solution process and relative low temperature treatment, which is suitable for a range of substrates. This paper introduces the slot-die and electrostatic force-assisted dispensing (EFAD) printing for solution-processable methods of WO3 film fabrication. The resulting films were compared with WO3 films prepared by spin coating. Both films exhibited a similar morphology and crystalline structure. Furthermore, three different processed WO3 film-based electrochromic devices (ECDs) were prepared and exhibited similar device behaviors. In addition, large area (100 cm2) and patterned ECDs were fabricated using slot-die and EFAD printing. Consequently, slot-die and EFAD printing can be used to commercialize WO3 based-ECDs applications, such as smart windows and reflective displays.


Sign in / Sign up

Export Citation Format

Share Document