Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency and yield of strawberry

2011 ◽  
Vol 127 (3) ◽  
pp. 318-324 ◽  
Author(s):  
Sushil Kumar ◽  
P. Dey
Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 495 ◽  
Author(s):  
Pingfeng Li ◽  
Huang Tan ◽  
Jiahang Wang ◽  
Xiaoqing Cao ◽  
Peiling Yang

Although water-saving measures are increasingly being adopted in orchards, little is known about how different irrigation methods enhance water use efficiency at the root system level. To study the allocation of water sources of water absorption by cherry roots under two irrigation methods, surface irrigation and drip irrigation, oxygen isotope tracing and root excavation were used in this study. We found that different irrigation methods have different effects on the average δ18O content of soil water in the soil profile. The IsoSource model was applied to calculate the contribution rate of water absorption by cherry roots under these irrigation methods. During the drought period in spring (also a key period of water consumption for cherry trees), irrigation water was the main source of water absorbed by cherry roots. In summer, cherry roots exhibited a wide range of water absorption sources. In this case, relative to the surface irrigation mode, the drip irrigation mode demonstrated higher irrigation water use efficiency. After two years of the above experiment, root excavation was used to analyze the effects of these irrigation methods on the distribution pattern of roots. We found that root distribution is mainly affected by soil depth. The root system indexes in 10–30 cm soil layer differ significantly from those in other soil layers. Drip irrigation increased the root length density (RLD) and root surface area (RSA) in the shallow soil. There was no significant difference in root biomass density (RBD) and root volume ratio (RVR) between the two irrigation treatments. The effects of these irrigation methods on the 2D distribution of cherry RBD, RLD, RSA and RVR, which indicated that the cherry roots were mainly concentrated in the horizontal depths of 20 to 100 cm, which was related to the irrigation wet zone. In the current experiment, more than 85% of cherry roots were distributed in the space with horizontal radius of 0 to 100 cm and vertical depth of 0 to 80 cm; above 95% of cherry roots were distributed in the space with the horizontal radius of 0 to 150 cm and the vertical depth of 0 to 80 cm. Compared with surface irrigation, drip irrigation makes RLD and RSA more concentrated in the horizontal range of 30–100 cm and vertical range of 0–70 cm.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 110 ◽  
Author(s):  
Andreas Ropokis ◽  
Georgia Ntatsi ◽  
Constantinos Kittas ◽  
Nikolaos Katsoulas ◽  
Dimitrios Savvas

In areas characterized by mild winter climate, pepper is frequently cultivated in unheated greenhouses in which the temperature during the winter may drop to suboptimal levels. Under low temperature (LT) conditions, the uptake of nutrients may be altered in a different manner than that of the water and thus their uptake ratio, known as uptake concentration, may be different than in greenhouses with standard temperature (ST) conditions. In the present study, pepper plants of the cultivars “Sammy” and “Orangery”, self-grafted or grafted onto two commercial rootstocks (“Robusto” and “Terrano”), were cultivated in a greenhouse under either ST or LT temperature conditions. The aim of the study was to test the impact of grafting and greenhouse temperature on total yield, water use efficiency, and nutrient uptake. The LT regime reduced the yield by about 50% in “Sammy” and 33% in “Orangery”, irrespective of the grafting combination. Grafting of “Sammy” onto both “Robusto” and “Terrano” increased the total fruit yield by 39% and 34% compared with the self-grafted control, while grafting of “Orangery” increased the yield only when the rootstock was “Terrano”. The yield increase resulted exclusively from enhancement of the fruit number per plant. Both the water consumption and the water use efficiency were negatively affected by the LT regime, however the temperature effect interacted with the rootstock/scion combination. The LT increased the uptake concentrations (UC) of K, Ca, Mg, N, and Mn, while it decreased strongly that of P and slightly the UC of Fe and Zn. The UC of K and Mg were influenced by the rootstock/scion combination, however this effect interacted with the temperature regime. In contrast, the Ca, N, and P concentrations were not influenced by the grafting combination. The results of the present study show that the impact of grafting on yield and nutrient uptake in pepper depend not merely on the rootstock genotype, however on the rootstock/scion combination.


Sign in / Sign up

Export Citation Format

Share Document