Genome-wide identification of microRNAs involved in the regulation of fruit ripening in apple (Malus domestica)

2021 ◽  
Vol 289 ◽  
pp. 110416
Author(s):  
Miao-Miao Wang ◽  
Tong-Xin Li ◽  
Yao Wu ◽  
Shang-Wei Song ◽  
Tuan-Hui Bai ◽  
...  
2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.


2014 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoqin Li ◽  
Xiangjing Yin ◽  
Hao Wang ◽  
Jun Li ◽  
Chunlei Guo ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zahra Iqbal ◽  
Mohammed Shariq Iqbal ◽  
Lalida Sangpong ◽  
Gholamreza Khaksar ◽  
Supaart Sirikantaramas ◽  
...  

Abstract Background Fruit ripening is an intricate developmental process driven by a highly coordinated action of complex hormonal networks. Ethylene is considered as the main phytohormone that regulates the ripening of climacteric fruits. Concomitantly, several ethylene-responsive transcription factors (TFs) are pivotal components of the regulatory network underlying fruit ripening. Calmodulin-binding transcription activator (CAMTA) is one such ethylene-induced TF implicated in various stress and plant developmental processes. Results Our comprehensive analysis of the CAMTA gene family in Durio zibethinus (durian, Dz) identified 10 CAMTAs with conserved domains. Phylogenetic analysis of DzCAMTAs, positioned DzCAMTA3 with its tomato ortholog that has already been validated for its role in the fruit ripening process through ethylene-mediated signaling. Furthermore, the transcriptome-wide analysis revealed DzCAMTA3 and DzCAMTA8 as the highest expressing durian CAMTA genes. These two DzCAMTAs possessed a distinct ripening-associated expression pattern during post-harvest ripening in Monthong, a durian cultivar native to Thailand. The expression profiling of DzCAMTA3 and DzCAMTA8 under natural ripening conditions and ethylene-induced/delayed ripening conditions substantiated their roles as ethylene-induced transcriptional activators of ripening. Similarly, auxin-suppressed expression of DzCAMTA3 and DzCAMTA8 confirmed their responsiveness to exogenous auxin treatment in a time-dependent manner. Accordingly, we propose that DzCAMTA3 and DzCAMTA8 synergistically crosstalk with ethylene during durian fruit ripening. In contrast, DzCAMTA3 and DzCAMTA8 antagonistically with auxin could affect the post-harvest ripening process in durian. Furthermore, DzCAMTA3 and DzCAMTA8 interacting genes contain significant CAMTA recognition motifs and regulated several pivotal fruit-ripening-associated pathways. Conclusion Taken together, the present study contributes to an in-depth understanding of the structure and probable function of CAMTA genes in the post-harvest ripening of durian.


2022 ◽  
Vol 294 ◽  
pp. 110786
Author(s):  
Lifang Sun ◽  
Nasrullah ◽  
Fuzhi Ke ◽  
Zhenpeng Nie ◽  
Jianguo Xu ◽  
...  

2013 ◽  
Vol 71 ◽  
pp. 268-282 ◽  
Author(s):  
Xiaoqin Li ◽  
Rongrong Guo ◽  
Jun Li ◽  
Stacy D. Singer ◽  
Yucheng Zhang ◽  
...  

2016 ◽  
Vol 88 (5) ◽  
pp. 735-748 ◽  
Author(s):  
Tong Li ◽  
Zhongyu Jiang ◽  
Lichao Zhang ◽  
Dongmei Tan ◽  
Yun Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document