scholarly journals Comprehensive genome-wide analysis of calmodulin-binding transcription activator (CAMTA) in Durio zibethinus and identification of fruit ripening-associated DzCAMTAs

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zahra Iqbal ◽  
Mohammed Shariq Iqbal ◽  
Lalida Sangpong ◽  
Gholamreza Khaksar ◽  
Supaart Sirikantaramas ◽  
...  

Abstract Background Fruit ripening is an intricate developmental process driven by a highly coordinated action of complex hormonal networks. Ethylene is considered as the main phytohormone that regulates the ripening of climacteric fruits. Concomitantly, several ethylene-responsive transcription factors (TFs) are pivotal components of the regulatory network underlying fruit ripening. Calmodulin-binding transcription activator (CAMTA) is one such ethylene-induced TF implicated in various stress and plant developmental processes. Results Our comprehensive analysis of the CAMTA gene family in Durio zibethinus (durian, Dz) identified 10 CAMTAs with conserved domains. Phylogenetic analysis of DzCAMTAs, positioned DzCAMTA3 with its tomato ortholog that has already been validated for its role in the fruit ripening process through ethylene-mediated signaling. Furthermore, the transcriptome-wide analysis revealed DzCAMTA3 and DzCAMTA8 as the highest expressing durian CAMTA genes. These two DzCAMTAs possessed a distinct ripening-associated expression pattern during post-harvest ripening in Monthong, a durian cultivar native to Thailand. The expression profiling of DzCAMTA3 and DzCAMTA8 under natural ripening conditions and ethylene-induced/delayed ripening conditions substantiated their roles as ethylene-induced transcriptional activators of ripening. Similarly, auxin-suppressed expression of DzCAMTA3 and DzCAMTA8 confirmed their responsiveness to exogenous auxin treatment in a time-dependent manner. Accordingly, we propose that DzCAMTA3 and DzCAMTA8 synergistically crosstalk with ethylene during durian fruit ripening. In contrast, DzCAMTA3 and DzCAMTA8 antagonistically with auxin could affect the post-harvest ripening process in durian. Furthermore, DzCAMTA3 and DzCAMTA8 interacting genes contain significant CAMTA recognition motifs and regulated several pivotal fruit-ripening-associated pathways. Conclusion Taken together, the present study contributes to an in-depth understanding of the structure and probable function of CAMTA genes in the post-harvest ripening of durian.

2021 ◽  
Author(s):  
Julie Graham ◽  
Kay Smith ◽  
Katrin MacKenzie ◽  
Linda Milne ◽  
Nikki Jennings ◽  
...  

Abstract Background The changing climate is altering timing of key fruit ripening processes and increasing the occurrence of fruit defects. This work aimed to expand our knowledge of the genetic control of the ripening process in raspberry by examining a biennial x primocane F1 population to determine if the progeny exhibited both primocane and biennial flowering modes, which if any was dominant, and to identify QTL and genome locations associated with fruit development to understand how developmental control in this population differs from a biennial x biennial F1 population previously studied. Results The progeny from this biennial x primocane population exhibited primocane fruiting completing their lifecycle in a single season and also fruiting on second-year wood not removed in season one. QTL associated with rate of fruit development were identified on both primocane and fruiting canes with both parents impacting. Conclusions Novel QTL associated with the developmental process of primocane fruiting were identified. These in the main, differed from developmental QTL for similar developmental stages on fruiting canes (second year canes) with only one significant overlap on linkage group 6. In general, the process of development on fruiting canes overall differed from that in a biennial x biennial population, with the differences being greatest on linkage groups 3 and 6 suggesting control of development differs in the different fruiting types. Further understanding will be achieved by examining genome regions linked to QTL to allow breeding to meet climate requirements for yield stability.


2014 ◽  
Author(s):  
Guenevere Perry ◽  
Diane Williams

The consumer demand for fresh fruits and vegetables increases every year, and farmers need a low cost novel method to reduce post-harvest loss and preserve the quality of fresh fruits and vegetables. This study identifies a method to induce soil bacteria to biosynthesize a nitrile compound that potentially enters the plants tissue and negatively affects climacteric ripening and delays the ripening process at 20-30˚C. This study used soil rich with soil microbes, to delay the ripening of climacteric fruit. The soil was treated with nitrogen, a heavy metal, and ethylene gas. Ethylene induced the soil to delay the ripening of organic bananas and peaches. A prototype transportation container maintained fruit fresh for up to 72 h at 20-30˚C. The fruit retained color, firmness, texture, no bruising and minimal spotting. The soil also prevented fungal infection in all samples. GC-MS analysis suggests ethylene induced the soil microbes to release an acetonitrile compound into the gaseous environment. The nitrile is released in low concentrations, but mature plants (fruits) contain very low levels of indole-3-acetonitrile (IAN) or indole-3-acetic acid (IAA). The nitrile may obstruct or modify the mature plants (fruit) late stages development process, thus delay the climacteric ripening process and retarding the physiological and phenotypic effects of fruit ripening. We believe this study may have strong applications for post-harvest biotechnology.


2019 ◽  
Vol 244 ◽  
pp. 10-14 ◽  
Author(s):  
Laraib Meer ◽  
Sana Mumtaz ◽  
Abdullahi Muhammad Labbo ◽  
Muhammad Jawad Khan ◽  
Irfan Sadiq

PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0236454 ◽  
Author(s):  
Essa Ali ◽  
Mohammad Ammar Raza ◽  
Ming Cai ◽  
Nazim Hussain ◽  
Ahmad Naeem Shahzad ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Zahra Iqbal ◽  
Mohammed Shariq Iqbal ◽  
Surendra Pratap Singh ◽  
Teerapong Buaboocha

Calcium (Ca2+) ion is a critical ubiquitous intracellular second messenger, acting as a lead currency for several distinct signal transduction pathways. Transient perturbations in free cytosolic Ca2+ ([Ca2+]cyt) concentrations are indispensable for the translation of signals into adaptive biological responses. The transient increase in [Ca2+]cyt levels is sensed by an array of Ca2+ sensor relay proteins such as calmodulin (CaM), eventually leading to conformational changes and activation of CaM. CaM, in a Ca2+-dependent manner, regulates several transcription factors (TFs) that are implicated in various molecular, physiological, and biochemical functions in cells. CAMTA (calmodulin-binding transcription activator) is one such member of the Ca2+-loaded CaM-dependent family of TFs. The present review focuses on Ca2+ as a second messenger, its interaction with CaM, and Ca2+/CaM-mediated CAMTA transcriptional regulation in plants. The review recapitulates the molecular and physiological functions of CAMTA in model plants and various crops, confirming its probable involvement in stress signaling pathways and overall plant development. Studying Ca2+/CaM-mediated CAMTA TF will help in answering key questions concerning signaling cascades and molecular regulation under stress conditions and plant growth, thus improving our knowledge for crop improvement.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1827
Author(s):  
Rong Gao ◽  
Yanyan Luo ◽  
Fahong Yun ◽  
Xuetong Wu ◽  
Peng Wang ◽  
...  

The calmodulin-binding transcription activator (CAMTA), as one of the most distinctive families of transcription factors, plays an important role in plant growth and development and in the stress response. However, it is currently unknown whether CAMTA exists in cucumbers and what its function is. In this study, we first identified four CAMTA genes in the cucumber genome using a genome-wide search method. Subsequently, we analyzed their physical and chemical properties, gene structure, protein domains, and phylogenetic relationships. The results show that the structure of CsCAMTAs is similar to that of other plants, and a phylogenetic analysis divides them into three groups. The analysis of cis-acting elements shows that most CsCAMTAs contain a variety of hormones and stress-related elements. The RT-PCR analysis shows that CsCAMTAs have different expression levels in different tissues and can be induced by IAA, ABA, MeJA, NaCl, and PEG. Finally, we analyzed the expression pattern of CsCAMTAs’ alternative spliceosomes under salt and drought stress. The results show that the expression levels of the different spliceosomes are affected by the type of stress and the duration of stress. These data indicate that CsCAMTAs participate in growth and development and in the stress response in cucumbers, a finding which lays the foundation for future CsCAMTAs’ functional research.


2010 ◽  
Vol 1 (1) ◽  
pp. 29
Author(s):  
Marcos Vieira da Silva ◽  
Cassia Inês Lourenzi Franco Rosa ◽  
Adimilson Bosco Chitarra

<p>Tomato is one of the most produced and consumed olericole plants in the world, being a highly perishable fruit, which presents high levels of losses in the post-harvest period. As a form of reducing these losses, it is necessary to know the product physiology. The fruit-ripening phase involves changes in the sensorial characteristics that are unchained by ethylene, a hormone naturally synthesized within the cells and liberated in the form of gas. Ethylene can also be applied on an exogenous way, thus accelerating and making even the ripening of fruits as the tomato. On the other hand, the ripening process can be delayed with the use of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene synthesis, thus prolonging the useful life in the post-harvest period. In the present investigation, with the purpose of a literature revision, in a general way, it was to demonstrate the forms of controlling the ripening of tomato fruits, in the post-harvest period, in order to prevent and reduce losses. The collected data showed that, with better care during the fruit handling and, mainly, with the use of different technologies, as the application of 1-MCP, post-harvest losses in tomato plant culture can be reduced significantly.</p><p>&nbsp;</p><p><a href="http://dx.doi.org/10.14685/rebrapa.v4i1.116">http://dx.doi.org/10.14685/rebrapa.v1i1.6</a></p>


2016 ◽  
Vol 113 (31) ◽  
pp. 8855-8860 ◽  
Author(s):  
Geoffrey Benn ◽  
Marta Bjornson ◽  
Haiyan Ke ◽  
Amancio De Souza ◽  
Edward I. Balmond ◽  
...  

The general stress response (GSR) is an evolutionarily conserved rapid and transient transcriptional reprograming of genes central for transducing environmental signals into cellular responses, leading to metabolic and physiological readjustments to cope with prevailing conditions. Defining the regulatory components of the GSR will provide crucial insight into the design principles of early stress-response modules and their role in orchestrating master regulators of adaptive responses. Overaccumulation of methylerythritol cyclodiphosphate (MEcPP), a bifunctional chemical entity serving as both a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway and a stress-specific retrograde signal, in ceh1 (constitutively expressing hydroperoxide lyase1)-mutant plants leads to large-scale transcriptional alterations. Bioinformatic analyses of microarray data in ceh1 plants established the overrepresentation of a stress-responsive cis element and key GSR marker, the rapid stress response element (RSRE), in the promoters of robustly induced genes. ceh1 plants carrying an established 4×RSRE:Luciferase reporter for monitoring the GSR support constitutive activation of the response in this mutant background. Genetics and pharmacological approaches confirmed the specificity of MEcPP in RSRE induction via the transcription factor CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3), in a calcium-dependent manner. Moreover, CAMTA3-dependent activation of IRE1a (inositol-requiring protein-1) and bZIP60 (basic leucine zipper 60), two RSRE containing unfolded protein-response genes, bridges MEcPP-mediated GSR induction to the potentiation of protein-folding homeostasis in the endoplasmic reticulum. These findings introduce the notion of transcriptional regulation by a key plastidial retrograde signaling metabolite that induces nuclear GSR, thereby offering a window into the role of interorgannellar communication in shaping cellular adaptive responses.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260665
Author(s):  
Nithiwat Suntichaikamolkul ◽  
Lalida Sangpong ◽  
Hubert Schaller ◽  
Supaart Sirikantaramas

Durian (Durio zibethinus L.) is a major economic crop native to Southeast Asian countries, including Thailand. Accordingly, understanding durian fruit ripening is an important factor in its market worldwide, owing to the fact that it is a climacteric fruit with a strikingly limited shelf life. However, knowledge regarding the molecular regulation of durian fruit ripening is still limited. Herein, we focused on cytochrome P450, a large enzyme family that regulates many biosynthetic pathways of plant metabolites and phytohormones. Deep mining of the durian genome and transcriptome libraries led to the identification of all P450s that are potentially involved in durian fruit ripening. Gene expression validation by RT-qPCR showed a high correlation with the transcriptome libraries at five fruit ripening stages. In addition to aril-specific and ripening-associated expression patterns, putative P450s that are potentially involved in phytohormone metabolism were selected for further study. Accordingly, the expression of CYP72, CYP83, CYP88, CYP94, CYP707, and CYP714 was significantly modulated by external treatment with ripening regulators, suggesting possible crosstalk between phytohormones during the regulation of fruit ripening. Interestingly, the expression levels of CYP88, CYP94, and CYP707, which are possibly involved in gibberellin, jasmonic acid, and abscisic acid biosynthesis, respectively, were significantly different between fast- and slow-post-harvest ripening cultivars, strongly implying important roles of these hormones in fruit ripening. Taken together, these phytohormone-associated P450s are potentially considered additional molecular regulators controlling ripening processes, besides ethylene and auxin, and are economically important biological traits.


2020 ◽  
Vol 117 (52) ◽  
pp. 33679-33688
Author(s):  
Chuanwei Yang ◽  
Liufan Yin ◽  
Famin Xie ◽  
Mengmeng Ma ◽  
Sha Huang ◽  
...  

Photomorphogenesis is a critical developmental process bridging light-regulated transcriptional reprogramming with morphological changes in organisms. Strikingly, the chromatin-based transcriptional control of photomorphogenesis remains poorly understood. Here, we show that the Arabidopsis (Arabidopsis thaliana) ortholog of ATP-dependent chromatin-remodeling factor AtINO80 represses plant photomorphogenesis. Loss of AtINO80 inhibited hypocotyl cell elongation and caused anthocyanin accumulation. Both light-induced genes and dark-induced genes were affected in the atino80 mutant. Genome-wide occupancy of the H2A.Z histone variant and levels of histone H3 were reduced in atino80. In particular, AtINO80 bound the gene body of ELONGATED HYPOCOTYL 5 (HY5), resulting in lower chromatin incorporations of H2A.Z and H3 at HY5 in atino80. Genetic analysis revealed that AtINO80 acts in a phytochrome B- and HY5-dependent manner in the regulation of photomorphogenesis. Together, our study elucidates a mechanism wherein AtINO80 modulates nucleosome density and H2A.Z incorporation and represses the transcription of light-related genes, such as HY5, to fine tune plant photomorphogenesis.


Sign in / Sign up

Export Citation Format

Share Document