Variation of lignan content and α-glucosidase inhibitory activity of Schisandra chinensis fruit at different maturation stages: Comparison with stem, leaf and seed

2022 ◽  
Vol 293 ◽  
pp. 110679
Author(s):  
Solip Lee ◽  
Sang Won Yeon ◽  
Ayman Turk ◽  
Se Hwan Ryu ◽  
Jiae Seo ◽  
...  
2010 ◽  
Vol 24 (S2) ◽  
pp. S225-S228 ◽  
Author(s):  
MinKyun Na ◽  
Tran Manh Hung ◽  
Won Keun Oh ◽  
Byung Sun Min ◽  
Seung Ho Lee ◽  
...  

Planta Medica ◽  
2003 ◽  
Vol 69 (01) ◽  
pp. 63-64 ◽  
Author(s):  
Im Lee ◽  
Hyeong-Kyu Lee ◽  
Nguyen Dat ◽  
Mi Lee ◽  
Jung Kim ◽  
...  

Author(s):  
Juan Mora-Galindo ◽  
Jorge Arauz-Contreras

The zinc iodide-osmium tetroxide (ZIO) technique is presently employed to study both, neural and non neural tissues. Precipitates depends on cell types and possibly cell metabol ism as well.Guinea pig cecal mucosa, already known to be composed of epithelium with cells at different maturation stages and lamina propria which i s formed by morphologically and functionally heterogeneous cell population, was studied to determine the pat tern of ZIO impregnation. For this, adult Guinea pg cecal mucosa was fixed with buffered 1.2 5% g 1 utara 1 dehyde before incubation with ZIO for 16 hours, a t 4°C in the dark. Further steps involved a quick sample dehydration in graded ethanols, embedding in Epon 812 and sectioning to observe the unstained material under a phase contrast light microscope (LM) and a transmission electron microscope (TEM).


Author(s):  
Philip D. Lunger ◽  
H. Fred Clark

In the course of fine structure studies of spontaneous “C-type” particle production in a viper (Vipera russelli) spleen cell line, designated VSW, virus particles were frequently observed within mitochondria. The latter were usually enlarged or swollen, compared to virus-free mitochondria, and displayed a considerable degree of cristae disorganization.Intramitochondrial viruses measure 90 to 100 mμ in diameter, and consist of a nucleoid or core region of varying density and measuring approximately 45 mμ in diameter. Nucleoid density variation is presumed to reflect varying degrees of condensation, and hence maturation stages. The core region is surrounded by a less-dense outer zone presumably representing viral capsid.Particles are usually situated in peripheral regions of the mitochondrion. In most instances they appear to be lodged between loosely apposed inner and outer mitochondrial membranes.


Author(s):  
Pınar Ercan ◽  
Sedef Nehir El

Abstract. The goals of this study were to determine and evaluate the bioaccessibility of total anthocyanin and procyanidin in apple (Amasya, Malus communis), red grape (Papazkarası, Vitis vinifera) and cinnamon (Cassia, Cinnamomum) using an in vitro static digestion system based on human gastrointestinal physiologically relevant conditions. Also, in vitro inhibitory effects of these foods on lipid (lipase) and carbohydrate digestive enzymes (α-amylase and α-glucosidase) were performed with before and after digested samples using acarbose and methylumbelliferyl oleate (4MUO) as the positive control. While the highest total anthocyanin content was found in red grape (164 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432 ± 177.31 mg/100 g) (p < 0.05). The anthocyanin bioaccessibilities were found as 10.2 ± 1%, 8.23 ± 0.64%, and 8.73 ± 0.70% in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57 ± 0.71%, 14.08 ± 0.74% and 18.75 ± 1.49%, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544 ± 21.94, 445 ± 15.67, 1592 ± 17.58 μg/mL, respectively), α-amylase (IC50 38.4 ± 7.26, 56.1 ± 3.60, 3.54 ± 0.86 μg/mL, respectively), and lipase (IC50 52.7 ± 2.05, 581 ± 54.14, 49.6 ± 2.72 μg/mL), respectively. According to our results apple, red grape and cinnamon have potential to inhibit of lipase, α-amylase and α-glucosidase digestive enzymes.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
J Slanina ◽  
L Bøezinová ◽  
H Paulová ◽  
O Humpa

Sign in / Sign up

Export Citation Format

Share Document