Life cycle assessment of wastewater treatment technologies treating petroleum process waters

2006 ◽  
Vol 367 (1) ◽  
pp. 58-70 ◽  
Author(s):  
N. Vlasopoulos ◽  
F.A. Memon ◽  
D. Butler ◽  
R. Murphy
Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6591 ◽  
Author(s):  
Shinji Takeshita ◽  
Hooman Farzaneh ◽  
Mehrnoosh Dashti

In this paper, a comprehensive life-cycle assessment (LCA) is carried out in order to evaluate the multiple environmental-health impacts of the biological wastewater treatment of the fish-processing industry throughout its life cycle. To this aim, the life-cycle impact assessment method based on endpoint modeling (LIME) was considered as the main LCA model. The proposed methodology is based on an endpoint modeling framework that uses the conjoint analysis to calculate damage factors for human health, social assets, biodiversity, and primary production, based on Indonesia’s local data inventory. A quantitative microbial risk assessment (QMRA) is integrated with the LIME modeling framework to evaluate the damage on human health caused by five major biological treatment technologies, including chemical-enhanced primary clarification (CEPC), aerobic-activated sludge (AS), up-flow anaerobic sludge blanket (UASB), ultrafiltration (UF) and reverse osmosis (RO) in this industry. Finally, a life-cycle costing (LCC) is carried out, considering all the costs incurred during the lifetime. The LCA results revealed that air pollution and gaseous emissions from electricity consumption have the most significant environmental impacts in all scenarios and all categories. The combined utilization of the UF and RO technologies in the secondary and tertiary treatment processes reduces the health damage caused by microbial diseases, which contributes significantly to reducing overall environmental damage.


ACS Omega ◽  
2020 ◽  
Vol 5 (42) ◽  
pp. 27733-27733
Author(s):  
Faiza Niaz ◽  
Qasim Khan ◽  
Mustafa Ali ◽  
Wenxing Shen

2014 ◽  
Vol 535 ◽  
pp. 346-349
Author(s):  
Mei Wang ◽  
Ming Yang ◽  
Jun Liu ◽  
Jian Fen Li

Effect and benefits of a product or service could be analyzed and evaluated by life cycle assessment during the whole life cycle. Urban sewage treatment plants could improve and control urban water pollution escalating, but it also had certain harm to environment. Effect and benefits of urban wastewater treatment plant A and B were analyzed and evaluated, 13 factors were selected, and comprehensive benefits were researched quantificationally using the method of analytic hierarchy process. It found that urban wastewater treatment plant A who applied A/O process had better benefits than urban wastewater treatment plant B who applied BIOLAK process.


Author(s):  
Farhad Sakhaee

Abstract: Life cycle assessment (LCA) is a tool to evaluate environmental impacts based on products of a process. This research is a case study of wastewater treatment facilities of ERTC (Environmental Resources Training Center), SIUE University, based on available data for two semi-annual sludge quantities (year 2015) from sludge management report. The aim of this study is to compare set of possibilities for a wastewater treatment facility at ERTC. The simulation has been done through SimaPro model. Electricity and methane were considered and the cumulative weight of their impacts has been investigated. Total solids for two semi-annual sludge has been fed to the model in kilogram and different production (electricity and methane) configuration were investigated. The most plausible configuration based on the cumulative environmental impact proposed as best practical solution.


2013 ◽  
Vol 04 (09) ◽  
pp. 1018-1033 ◽  
Author(s):  
Monica C. Rothermel ◽  
Amy E. Landis ◽  
William J. Barr ◽  
Kullapa Soratana ◽  
Kayla M. Reddington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document