Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: Levels, wet deposition fluxes and source implication

2014 ◽  
Vol 468-469 ◽  
pp. 272-279 ◽  
Author(s):  
Qiaoyun Wang ◽  
Xinming Wang ◽  
Xiang Ding
2009 ◽  
Vol 9 (6) ◽  
pp. 23465-23504 ◽  
Author(s):  
X. W. Fu ◽  
X. Feng ◽  
Z. Q. Dong ◽  
R. S. Yin ◽  
J. X. Wang ◽  
...  

Abstract. China is regarded as the largest contributor of mercury (Hg) to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric total gaseous mercury (TGM) were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Wet and dry deposition fluxes of Hg were also calculated following collection of precipitation, throughfall and litterfall. Atmospheric TGM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China, indicating great emissions of Hg in central, south and southwest China. Seasonal and diurnal variations of TGM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Wet deposition of Hg was quite low, while its dry deposition of Hg (litterfall + throughfall-direct wet deposition) constituted a major portion of total deposition (~88% for total mercury (THg) and 84% for methyl mercury (MeHg)). This highlights the importance of vegetation to Hg atmospheric cycling. In a remote forest ecosystem of China, dry deposition of TGM, especially gaseous elemental mercury (GEM), was very important for the depletion of atmospheric Hg. Elevated TGM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated Hg dry deposition fluxes observed in Mt. Leigong.


2013 ◽  
Vol 13 (8) ◽  
pp. 21801-21835
Author(s):  
K. Osada ◽  
S. Ura ◽  
M. Kagawa ◽  
M. Mikami ◽  
T. Y. Tanaka ◽  
...  

Abstract. Data of temporal variations and spatial distributions of mineral dust deposition fluxes are very limited in terms of duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition by wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyzer. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m−2 yr−1) and at Cape Hedo (1.7 g m−2 yr−1) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (>60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m−2 yr−1) and at Cape Hedo (2.0 g m−2 yr−1) as average values in 2009 and 2010. Although the seasonal tendency of the monthly dry deposition amount roughly resembled that of monthly days of Kosa dust events, the monthly amount of dry deposition was not proportional to monthly days of the events. Comparison of dry deposition fluxes with vertical distribution of dust particles deduced from Lidar data and coarse particle concentrations suggested that the maximum dust layer height or thickness is an important factor for controlling the dry deposition amount after long-range transport of dust particles. Size distributions of refractory dust particles were obtained using four-stage filtration: >20, >10, >5, and >1 μm diameter. Weight fractions of the sum of >20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions were decreasing generally with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Because giant dust particles are an important mass fraction of dust accumulation, especially in the north Pacific where is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height of giant dust particles is an important factor for studying dust budgets in the atmosphere and their role in biogeochemical cycles.


2016 ◽  
Author(s):  
Xuewu Fu ◽  
Yang Xu ◽  
Xiaofang Lang ◽  
Jun Zhu ◽  
Hui Zhang ◽  
...  

Abstract. Mercury (Hg) concentrations and deposition fluxes in precipitation and litterfall were measured at multiple sites (six rural sites and an urban site) across a broad geographic area in China. The annual deposition fluxes of Hg in precipitation at rural sites and an urban site were 2.0 to 7.2 µg m−2 yr−1 and 12.6 ± 6.5 µg m−2 yr−1, respectively. Wet deposition fluxes of Hg at rural sites showed a clear regional difference with elevated deposition fluxes in the subtropical zone, followed by the temporal zone and arid/semi-arid zone. Precipitation depth is the primary influencing factor causing the variation of wet deposition. Hg fluxes through litterfall ranged from 22.8 to 62.8 µg m−2 yr−1, higher than the wet deposition by a factor of 3.9 to 8.7 fluxes and representing approximately 75 % of the total Hg deposition at the forest sites in China. This suggests that uptake of atmospheric Hg by foliage is the dominant pathway to remove atmospheric mercury in forest ecosystems in China. Wet deposition fluxes of Hg at rural sites of China were generally lower compared to those in North America and Europe, possibly due to a combination of lower precipitation depth, lower GOM concentrations in the troposphere and the generally lower cloud base heights at most sites that washout a smaller amount of GOM and PBM during precipitation events.


2014 ◽  
Vol 14 (2) ◽  
pp. 629-640 ◽  
Author(s):  
Z. W. Wang ◽  
J. C. Gallet ◽  
C. A. Pedersen ◽  
X. S. Zhang ◽  
J. Ström ◽  
...  

Abstract. Light-absorbing aerosol – particularly elemental carbon (EC) – while mixed with snow and ice is an important climate driver from the enhanced absorption of solar radiation. Currently, considerable efforts are being made to estimate its radiative forcing on a global scale, but several uncertainties remain, particularly those regarding its deposition processes. In this study, concurrent measurements of EC in air and snow are performed for three years (2009–2012) at Changbai station, northeastern China. The scavenging ratio and the wet- and dry-deposition fluxes of EC over the snow surface are estimated. The mean EC concentration in the surface snow is 1000 ± 1500 ng g−1, ranging from 7 to 7640 ng g−1. The mean value of the scavenging ratio of EC by snow is 140 ± 100, with a median value of 150, which is smaller than that reported in Arctic areas. A non-rimed snow process is a significant factor in interpreting differences with Arctic areas. Wet-deposition fluxes of EC are estimated to be 0.47 ± 0.37 μg cm−2 month−1 on average over the three snow seasons studied. Dry deposition is more than five times higher, with an average of 2.65 ± 1.93 μg cm−2 month−1; however, only winter period estimation is possible (December–February). During winter in Changbai, 87% of EC in snow is estimated to be due to dry deposition, with a mean dry deposition velocity of 6.44 × 10−3 m s−1 and median of 8.14 × 10−3 m s−1. Finally, the calculation of the radiative effect shows that 500 ng g−1 of dry-deposited EC to a snow surface absorbs three times more incoming solar energy than the same mass mixed in the snow through wet deposition. Deposition processes of an EC-containing snow surface are, therefore, crucial to estimate its radiative forcing better, particularly in northeastern China, where local emission strongly influences the level and gradient of EC in the snowpack, and snow-covered areas are cold and dry due to the atmospheric general circulation. Furthermore, this study builds on the knowledge to characterize the conditions in the snow-laden Chinese rural areas better as well as to constrain transport of EC to the Arctic better.


2009 ◽  
Vol 157 (1) ◽  
pp. 303-312 ◽  
Author(s):  
Nathalie Sauret ◽  
Henri Wortham ◽  
Rafal Strekowski ◽  
Pierre Herckès ◽  
Laura Ines Nieto

2020 ◽  
Vol 20 (5) ◽  
pp. 1062-1069
Author(s):  
Fajin Chen ◽  
Qibin Lao ◽  
Zhiyang Li ◽  
Peiwang Bian ◽  
Qingmei Zhu ◽  
...  

2013 ◽  
Vol 13 (3) ◽  
pp. 6247-6294 ◽  
Author(s):  
J.-F. Lamarque ◽  
F. Dentener ◽  
J. McConnell ◽  
C.-U. Ro ◽  
M. Shaw ◽  
...  

Abstract. We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr−1 from nitrogen oxide emissions, 60 Tg(N) yr−1 from ammonia emissions, and 83 Tg(S) yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching > 1300 mg(N) m−2 yr−1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30–50 % larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.


Sign in / Sign up

Export Citation Format

Share Document