scholarly journals Atmospheric total gaseous mercury (TGM) concentrations and wet and dry deposition of mercury at a high-altitude mountain peak in south China

2009 ◽  
Vol 9 (6) ◽  
pp. 23465-23504 ◽  
Author(s):  
X. W. Fu ◽  
X. Feng ◽  
Z. Q. Dong ◽  
R. S. Yin ◽  
J. X. Wang ◽  
...  

Abstract. China is regarded as the largest contributor of mercury (Hg) to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric total gaseous mercury (TGM) were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Wet and dry deposition fluxes of Hg were also calculated following collection of precipitation, throughfall and litterfall. Atmospheric TGM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China, indicating great emissions of Hg in central, south and southwest China. Seasonal and diurnal variations of TGM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Wet deposition of Hg was quite low, while its dry deposition of Hg (litterfall + throughfall-direct wet deposition) constituted a major portion of total deposition (~88% for total mercury (THg) and 84% for methyl mercury (MeHg)). This highlights the importance of vegetation to Hg atmospheric cycling. In a remote forest ecosystem of China, dry deposition of TGM, especially gaseous elemental mercury (GEM), was very important for the depletion of atmospheric Hg. Elevated TGM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated Hg dry deposition fluxes observed in Mt. Leigong.

2010 ◽  
Vol 10 (5) ◽  
pp. 2425-2437 ◽  
Author(s):  
X. W. Fu ◽  
X. Feng ◽  
Z. Q. Dong ◽  
R. S. Yin ◽  
J. X. Wang ◽  
...  

Abstract. China is regarded as the largest contributor of mercury (Hg) to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Simultaneously, deposition fluxes of THg and MeHg in precipitation, throughfall and litterfall were also studied. Atmospheric GEM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China. Sources identification indicates that both regional industrial emissions and long range transport of Hg from central, south and southwest China were corresponded to the elevated GEM level. Seasonal and diurnal variations of GEM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Precipitation and throughfall deposition fluxes of THg and MeHg in Mt. Leigong were comparable or lower compared to those reported in Europe and North America, whereas litterfall deposition fluxes of THg and MeHg were higher compared to Europe and North America. This highlights the importance of vegetation to Hg atmospheric cycling. In th remote forest ecosystem of China, deposition of GEM via uptake of foliage followed by litterfall was very important for the depletion of atmospheric Hg. Elevated GEM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated litterfall deposition fluxes of Hg observed in Mt. Leigong.


2012 ◽  
Vol 12 (14) ◽  
pp. 6207-6218 ◽  
Author(s):  
Z. H. Dai ◽  
X. B. Feng ◽  
J. Sommar ◽  
P. Li ◽  
X. W. Fu

Abstract. The legacy of long-term mining activities in Wanshan mercury (Hg) mining area (WMMA), Guizhou, China including a series of environmental issues related to Hg pollution. The spatial distribution of gaseous elemental mercury (Hg0) concentrations in ambient air were monitored using a mobile RA-915+ Zeeman Mercury Analyzer during daytime and night time in May 2010. The data imply that calcines and mine wastes piles located at Dashuixi and on-going artisanal Hg mining activities at Supeng were major sources of atmospheric mercury in WMMA. For a full year (May 2010 to May 2011), sampling of precipitation and throughfall were conducted on a weekly basis at three sites (Shenchong, Dashuixi, and Supeng) within WMMA. Hg in deposition was characterized by analysis of total Hg (THg) and dissolved Hg (DHg) concentrations. The corresponding data exhibit a high degree of variability, both temporarily and spatially. The volume-weighted mean THg concentrations in precipitation and throughfall samples were 502.6 ng l−1 and 977.8 ng l−1 at Shenchong, 814.1 ng l−1and 3392.1 ng l−1 at Dashuixi, 7490.1 ng l−1and 9641.5 ng l−1 at Supeng, respectively. THg was enhanced in throughfall compared to wet deposition samples by up to a factor of 7. The annual wet Hg deposition fluxes were 29.1, 68.8 and 593.1 μg m−2 yr−1 at Shenchong, Dashuixi and Supeng, respectively, while the annual dry Hg deposition fluxes were estimated to be 378.9, 2613.6 and 6178 μg m−2 yr−1 at these sites, respectively. Dry deposition played a dominant role in total atmospheric Hg deposition in WMMA since the dry deposition fluxes were 10.4–37.9 times higher than the wet deposition fluxes during the whole sample period. Our data showed that air deposition was still an important pathway of Hg contamination to the local environment in WMMA.


2015 ◽  
Vol 15 (8) ◽  
pp. 11925-11983 ◽  
Author(s):  
X. W. Fu ◽  
H. Zhang ◽  
X. Wang ◽  
B. Yu ◽  
C.-J. Lin ◽  
...  

Abstract. China is presently the largest contributor of global anthropogenic Hg emission to the atmosphere. Over the past two decades, extensive studies have been conducted to characterize the concentration and speciation of atmospheric Hg in China. These studies provide important insight into the spatial and temporal distributions of atmospheric Hg species in China through ground-based measurements at a wide range of altitude over diverse geographical locations, and cruise and flight campaigns. In this critical review, we synthesize the available data to date to delineate the spatial and temporal patterns of atmospheric Hg, the long-range transport pattern of atmospheric Hg, and the impacts of Hg emissions on atmospheric Hg distribution and deposition in China. Atmospheric Hg species in China are substantially elevated compared to the background values in the Northern Hemisphere. The highly elevated Hg levels in Chinese urban areas were derived from local and regional anthropogenic and natural emissions, while long-range transport plays an important role in the atmospheric Hg concentration in remote areas. Preliminary studies suggested that atmosphere GEM levels are increasing at an urban and remote sites over the last decade, which were likely caused by the increasing anthropogenic emissions. The anthropogenic emission quantity in China estimated through the observed concentration ratios of GEM to CO (observed from 2001 to 2013) is approximately 983 t in 2009, ~ 3 folds of the published anthropogenic GEM emission inventories using activity data. Wet deposition fluxes of Hg in remote regions are low but the fluxes in Chinese urban areas are much higher than that in urban areas of North America and Europe. Dry deposition fluxes of Hg measured as litterfall input in forest areas of China were 2.5–9.0 times higher than the wet deposition fluxes and 1.8–13.6 times higher than the dry deposition fluxes of Hg in North America and Europe, suggesting that dry deposition to forest may be an important sink of atmospheric Hg in China.


2014 ◽  
Vol 14 (2) ◽  
pp. 1107-1121 ◽  
Author(s):  
K. Osada ◽  
S. Ura ◽  
M. Kagawa ◽  
M. Mikami ◽  
T. Y. Tanaka ◽  
...  

Abstract. Recent ground networks and satellite remote-sensing observations have provided useful data related to spatial and vertical distributions of mineral dust particles in the atmosphere. However, measurements of temporal variations and spatial distributions of mineral dust deposition fluxes are limited in terms of their duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition using wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyser. Wet and dry deposition fluxes of mineral dusts were both high in spring and low in summer, showing similar seasonal variations to frequency of aeolian dust events (Kosa) in Japan. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m−2 yr−1) and at Cape Hedo (1.7 g m−2 yr−1) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (> 60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m−2 yr−1) and at Cape Hedo (2.0 g m−2 yr−1) as average values in 2009 and 2010. The average ratio of wet and dry deposition fluxes was the highest at Toyama (3.3) and the lowest at Hedo (0.82), showing a larger contribution of the dry process at western sites, probably because of the distance from desert source regions and because of the effectiveness of the wet process in the dusty season. Size distributions of refractory dust particles were obtained using four-stage filtration: > 20, > 10, > 5, and > 1 μm diameter. Weight fractions of the sum of > 20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions generally decreased with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Based on temporal variations of PMc (2.5 < D < 10 μm), ground-based lidar, backward air trajectories, and vertical profiles of potential temperatures, transport processes of dust particles are discussed for events with high-deposition and low-deposition flux with high PMc. Low dry dust depositions with high PMc concentrations were observed under stronger (5 K km−1) stratification of potential temperature with thinner and lower (< 2 km) dust distributions because the PMc fraction of dust particles only survived after depletion of giant dust particles by rapid gravitational settling at the time they reach Japan. In contrast, transport through a thicker (> 2 km) dust layer with weak vertical gradient of potential temperature carry more giant dust particles to Japan. Because giant dust particles are an important mass fraction of dust accumulation, especially in the North Pacific, which is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height and fraction of giant dust particles are important factors for studying dust budgets in the atmosphere and their role in biogeochemical cycles.


2014 ◽  
Vol 14 (14) ◽  
pp. 20647-20676 ◽  
Author(s):  
Y. P. Pan ◽  
Y. S. Wang

Abstract. Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil and water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatio-temporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at ten sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites. In contrast, the wet deposition exhibited less spatial variation. The seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for K, Ni, As, Pb, Zn, Cd, Se, Ag and Tl, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution and solubility of the particles. We found that atmospheric inputs of Cu, Pb, Zn, Cd, As and Se were of the same magnitude as their increases in the topsoil of agricultural systems. In addition, the total deposition flux of Pb observed at a forest site in this study was twice that of the critical load (7.0 mg m−2 yr−1) calculated for temperate forest ecosystems in Europe. These findings provide baseline data needed for future targeting policies to protect various ecosystems from long-term heavy metal input via atmospheric deposition.


2018 ◽  
Author(s):  
David M. Nelson ◽  
Urumu Tsunogai ◽  
Ding Dong ◽  
Takuya Ohyama ◽  
Daisuke D. Komatsu ◽  
...  

Abstract. Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or come from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ~ +22 and +30 ‰ with higher values during winter and lower values in summer, which suggests greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19–+25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet deposition in urban environments and wet and dry deposition in rural environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet deposition, which is transported longer distances. These results illustrate the value of stable isotope data for distinguishing the transport distances and reaction pathways of atmospheric nitrate pollution.


2013 ◽  
Vol 13 (8) ◽  
pp. 21801-21835
Author(s):  
K. Osada ◽  
S. Ura ◽  
M. Kagawa ◽  
M. Mikami ◽  
T. Y. Tanaka ◽  
...  

Abstract. Data of temporal variations and spatial distributions of mineral dust deposition fluxes are very limited in terms of duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition by wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyzer. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m−2 yr−1) and at Cape Hedo (1.7 g m−2 yr−1) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (>60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m−2 yr−1) and at Cape Hedo (2.0 g m−2 yr−1) as average values in 2009 and 2010. Although the seasonal tendency of the monthly dry deposition amount roughly resembled that of monthly days of Kosa dust events, the monthly amount of dry deposition was not proportional to monthly days of the events. Comparison of dry deposition fluxes with vertical distribution of dust particles deduced from Lidar data and coarse particle concentrations suggested that the maximum dust layer height or thickness is an important factor for controlling the dry deposition amount after long-range transport of dust particles. Size distributions of refractory dust particles were obtained using four-stage filtration: >20, >10, >5, and >1 μm diameter. Weight fractions of the sum of >20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions were decreasing generally with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Because giant dust particles are an important mass fraction of dust accumulation, especially in the north Pacific where is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height of giant dust particles is an important factor for studying dust budgets in the atmosphere and their role in biogeochemical cycles.


2011 ◽  
Vol 11 (3) ◽  
pp. 218-229 ◽  
Author(s):  
Guor-Cheng Fang ◽  
Chia-Ching Lin ◽  
Jun-Han Huang ◽  
Yi-Liang Huang

2021 ◽  
Author(s):  
Outi Meinander ◽  
Enna Heikkinen ◽  
Jonas Svensson ◽  
Minna Aurela ◽  
Aki Virkkula ◽  
...  

&lt;p&gt;Black carbon (BC) and organic carbon (OC, including brown carbon BrC) aerosols in the atmosphere, and their wet and dry deposition, are important for their climatic and cryospheric effects. Seemingly small amounts of BC in snow, of the order of 10&amp;#8211;100 parts per billion by mass (ppb), have been shown to decrease its albedo by 1&amp;#8211;5 %. Due to the albedo-feedback mechanism, surface darkening accelerates snow and ice melt. In snow, the temporal variability of light absorbing aerosols, such as BC, depends both on atmospheric and cryospheric processes, mostly on sources and atmospheric transport, and dry and wet deposition processes, as well as post-depositional snow processes.&lt;/p&gt;&lt;p&gt;We started a new research activity on BC and OC wet and dry deposition at Helsinki Kumpula SMEAR III station (60&amp;#176;12 N, 24&amp;#176;57 E, Station for Measuring Ecosystem-Atmosphere Relations, https://www.atm.helsinki.fi/SMEAR/index.php/smear-iii). The work included winter, spring, summer and autumn deposition samples during January 2019 - June 2020 (sampling is currently on hold). In winter, wet deposition consisted of snowfall and rainwater samples. Dry deposition samples were separately collected in 2020. For sample collection, a custom-made device, including a heating-system, was applied. The samples were analyzed using the OCEC analyzer of the Finnish Meteorological Institute&amp;#8217;s aerosol laboratory, Helsinki, Finland. The special features in our deposition data are:&amp;#160;&lt;/p&gt;&lt;ul&gt;&lt;li&gt;seasonal BC, OC, and TC (total carbon, the sum of BC and OC) deposition data for an urban background station at 60 &lt;sup&gt;o&lt;/sup&gt;N&lt;/li&gt; &lt;li&gt;precipitation received as either water or snow &amp;#160;&lt;/li&gt; &lt;li&gt;dry deposition samples included (only in 2020)&lt;/li&gt; &lt;li&gt;data as wet and dry deposition rates [concentration/time/area]&lt;/li&gt; &lt;li&gt;simultaneous atmospheric measurements of the SMEAR III station&lt;/li&gt; &lt;/ul&gt;&lt;p&gt;Since our deposition samples are collected manually, the data are non-continuous, yet they allow us to provide deposition rates. Such data can be utilized in various modeling approaches including, for example, climate and long-range transport and deposition modeling. According to our knowledge, these data are the first BC (determined as elemental carbon, EC), OC and TC wet and dry deposition data to represent Finland. Our sampling location, north of 60 deg. N, can be useful for other high-latitude studies and Arctic assessments, too.&lt;/p&gt;&lt;p&gt;&lt;em&gt;Acknowledgements. We gratefully acknowledge support from the Academy of Finland NABCEA-project of Novel Assessment of Black Carbon in the Eurasian Arctic (no. 296302) and the Academy of Finland Flagship funding (grant no. 337552).&lt;/em&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document