scholarly journals High-resolution sedimentary records of some organochlorine pesticides in Yamzho Yumco Lake of the Tibetan Plateau: Concentration and composition

2018 ◽  
Vol 615 ◽  
pp. 469-475 ◽  
Author(s):  
Yong Sun ◽  
Guo-Li Yuan ◽  
Jun Li ◽  
Jianhui Tang ◽  
Gen-Hou Wang
2020 ◽  
Author(s):  
Arjen P. Stroeven ◽  
Ramona A.A. Schneider ◽  
Robin Blomdin ◽  
Natacha Gribenski ◽  
Marc W. Caffee ◽  
...  

<p>Paleoglaciological data is a crucial source of information towards insightful paleoclimate reconstructions by providing vital boundary conditions for regional and global climate models. In this context, the Third Pole Environment is considered a key region because it is highly sensitive to global climate change and its many glaciers constitute a diminishing but critical supply of freshwater to downstream communities in SE Asia. Despite its importance, extents of past glaciation on the Tibetan Plateau remain poorly documented or controversial largely because of the lack of well define glacial chronostratigraphies and reconstructions of former glacier extent. This study contributes to a better documentation of the extent and improved resolution of the timing of past glaciations on the southeastern margin of the Tibetan Plateau. We deploy a high-resolution TanDEM-X Digital Elevation Model (12 m resolution) to produce maps of glacial and proglacial fluvial landforms in unprecedented detail. Geomorphological and sedimentological field observations complement the mapping while cosmogenic nuclide exposure dating of quartz samples from boulders on end moraines detail the timing of local glacier expansion. Additionally, samples for optically stimulated luminescence dating were taken from extensive and distinct terraces located in pull-apart basins downstream of the end moraines to determine their formation time. We compare this new dataset with new and published electron spin resonance ages from terraces. Temporal coherence between the different chronometers strengthens the geochronological record while divergence highlights limitations in the applicability of the chronometers to glacial research or in our conceptual understanding of landscape changes in tectonic regions. Results highlight our current understanding of paleoglaciation, landscape development, and paleoclimate on the SE Tibetan Plateau.</p>


2020 ◽  
Vol 1 (3) ◽  
pp. 233-244
Author(s):  
Yihang Wang ◽  
Zhifeng Liu ◽  
Chunyang He ◽  
Pei Xia ◽  
Ziwen Liu ◽  
...  

2015 ◽  
Vol 6 (1) ◽  
pp. 109-124 ◽  
Author(s):  
J. Curio ◽  
F. Maussion ◽  
D. Scherer

Abstract. The Tibetan Plateau (TP) plays a key role in the water cycle of high Asia and its downstream regions. The respective influence of the Indian and East Asian summer monsoon on TP precipitation and regional water resources, together with the detection of moisture transport pathways and source regions are the subject of recent research. In this study, we present a 12-year high-resolution climatology of the atmospheric water transport (AWT) over and towards the TP using a new data set, the High Asia Refined analysis (HAR), which better represents the complex topography of the TP and surrounding high mountain ranges than coarse-resolution data sets. We focus on spatiotemporal patterns, vertical distribution and transport through the TP boundaries. The results show that the mid-latitude westerlies have a higher share in summertime AWT over the TP than assumed so far. Water vapour (WV) transport constitutes the main part, whereby transport of water as cloud particles (CP) also plays a role in winter in the Karakoram and western Himalayan regions. High mountain valleys in the Himalayas facilitate AWT from the south, whereas the high mountain regions inhibit AWT to a large extent and limit the influence of the Indian summer monsoon. No transport from the East Asian monsoon to the TP could be detected. Our results show that 36.8 ± 6.3% of the atmospheric moisture needed for precipitation comes from outside the TP, while the remaining 63.2% is provided by local moisture recycling.


Sign in / Sign up

Export Citation Format

Share Document