Association between degradation of pharmaceuticals and endocrine-disrupting compounds and microbial communities along a treated wastewater effluent gradient in Lake Mead

2018 ◽  
Vol 622-623 ◽  
pp. 1640-1648 ◽  
Author(s):  
Susanna M. Blunt ◽  
Joshua D. Sackett ◽  
Michael R. Rosen ◽  
Mark J. Benotti ◽  
Rebecca A. Trenholm ◽  
...  
2010 ◽  
Vol 61 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Shane A. Snyder ◽  
Mark J. Benotti

The presence of pharmaceuticals and endocrine disrupting compounds (EDCs) in the environment raises many questions about risk to the environment and risk to human health. Researchers have attributed adverse ecological effect effects to the presence of these compounds, particularly EDCs, though there is no consensus on what risk, if any, these compounds pose to human health. The scientific community is in the process of developing a better understanding of the occurrence, fate, and transport of pharmaceuticals and EDCs in the environment, including a better characterization of human exposure via drinking water. This paper provides a brief review of pharmaceuticals and EDCs in drinking water, as well as uses examples from Lake Mead, Nevada, USA, to highlight the issues associated with their fate and transport. Lastly, the effects of natural or anthropogenically driven processes, like natural seasonal flow or climate-change/prolonged drought are discussed as they are factors which can drastically alter environmental concentrations of these compounds. Without question, the propensity for the contamination of fresh water will rise as (1) human population continues to grow or (2) patterns of natural surface water slow and wastewater becomes a larger fraction of flow further highlighting the need for a more comprehensive understanding of their environmental behavior.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 321-327 ◽  
Author(s):  
M. Gallenkemper ◽  
T. Wintgens ◽  
T. Melin

Endocrine disrupting compounds can affect the hormone system in organisms. A wide range of endocrine disrupters were found in sewage and effluents of municipal wastewater treatment plants. Toxicological evaluations indicate that conventional wastewater treatment plants are not able to remove these substances sufficiently before disposing effluent into the environment. Membrane technology, which is proving to be an effective barrier to these substances, is the subject of this research. Nanofiltration provides high quality permeates in water and wastewater treatment. Eleven different nanofiltration membranes were tested in the laboratory set-up. The observed retention for nonylphenol (NP) and bisphenol A (BPA) ranged between 70% and 100%. The contact angle is an indicator for the hydrophobicity of a membrane, whose influence on the permeability and retention of NP was evident. The retention of BPA was found to be inversely proportional to the membrane permeability.


Author(s):  
Hanna Katarina Lilith Johansson ◽  
Camilla Taxvig ◽  
Gustav Peder Mohr Olsen ◽  
Terje Svingen

Abstract Early ovary development is considered to be largely hormone independent, yet there are associations between fetal exposure to endocrine disrupting chemicals and reproductive disorders in women. This can potentially be explained by perturbations to establishment of ovarian endocrine function rather than interference with an already established hormone system. In this study we explore if Hedgehog (HH) signaling, a central pathway for correct ovary development, can be disrupted by exposure to HH-disrupting chemicals, using the antifungal itraconazole as model compound. In the mouse Leydig cell line TM3, used as a proxy for ovarian theca cells, itraconazole exposure had a suppressing effect on genes downstream of HH signaling, such as Gli1. Exposing explanted rat ovaries (gestational day 22 or postnatal day 3) to 30 µM itraconazole for 72 h induced significant suppression of genes in the HH signaling pathway with altered Ihh, Gli1, Ptch1, and Smo expression similar to those previously observed in Ihh/Dhh knock-out mice. Exposing rat dams to 50 mg/kg bw/day in the perinatal period did not induce observable changes in the offspring’s ovaries. Overall, our results suggest that HH signal disruptors may affect ovary development with potential long-term consequences for female reproductive health. However, potent HH inhibitors would likely cause severe teratogenic effects at doses lower than those causing ovarian dysgenesis, so the concern with respect to reproductive disorder is for the presence of HH disruptors at low concentration in combination with other ovary or endocrine disrupting compounds.


Sign in / Sign up

Export Citation Format

Share Document