scholarly journals Effects of the Hedgehog signalling inhibitor itraconazole on developing rat ovaries

Author(s):  
Hanna Katarina Lilith Johansson ◽  
Camilla Taxvig ◽  
Gustav Peder Mohr Olsen ◽  
Terje Svingen

Abstract Early ovary development is considered to be largely hormone independent, yet there are associations between fetal exposure to endocrine disrupting chemicals and reproductive disorders in women. This can potentially be explained by perturbations to establishment of ovarian endocrine function rather than interference with an already established hormone system. In this study we explore if Hedgehog (HH) signaling, a central pathway for correct ovary development, can be disrupted by exposure to HH-disrupting chemicals, using the antifungal itraconazole as model compound. In the mouse Leydig cell line TM3, used as a proxy for ovarian theca cells, itraconazole exposure had a suppressing effect on genes downstream of HH signaling, such as Gli1. Exposing explanted rat ovaries (gestational day 22 or postnatal day 3) to 30 µM itraconazole for 72 h induced significant suppression of genes in the HH signaling pathway with altered Ihh, Gli1, Ptch1, and Smo expression similar to those previously observed in Ihh/Dhh knock-out mice. Exposing rat dams to 50 mg/kg bw/day in the perinatal period did not induce observable changes in the offspring’s ovaries. Overall, our results suggest that HH signal disruptors may affect ovary development with potential long-term consequences for female reproductive health. However, potent HH inhibitors would likely cause severe teratogenic effects at doses lower than those causing ovarian dysgenesis, so the concern with respect to reproductive disorder is for the presence of HH disruptors at low concentration in combination with other ovary or endocrine disrupting compounds.

2007 ◽  
Vol 56 (8) ◽  
pp. 161-168 ◽  
Author(s):  
A.R.A. Razak ◽  
Z. Ujang ◽  
H. Ozaki

Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C6OCL5Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITABTM software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.


Bioimpacts ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 289-300
Author(s):  
Sofiane Boudalia ◽  
Aissam Bousbia ◽  
Boualem Boumaaza ◽  
Malha Oudir ◽  
Marie Chantal Canivenc Lavier

Introduction: Scientific data suggest that early exposure to endocrine-disrupting chemicals (EDCs) affect -repro, -neuro, -metabolic systems, to which are added other notions such as mixtures, window and duration of exposure, trans-generational effects, and epigenetic mechanisms. Methods: In the present narrative review, we studied the relationship between exposure to EDCs with the appearance and development of obesity. Results: Exposure to EDCs like Bisphenol A during the early stages of development has been shown to lead to weight gain and obesity. EDCs can interfere with endocrine signaling, affect adipocytes differentiation and endocrine function and disrupt metabolic processes, especially if exposure occurs at very low doses, in the mixture, during early development stages for several generations. Conclusion: Exposure to EDCs is positively associated with obesity development. Moreover, the use of integrative approaches which mimicking environmental conditions are necessary and recommended to evaluate EDCs' effects in future studies.


2005 ◽  
Vol 59 (3-4) ◽  
pp. 485-490
Author(s):  
Marijana Vucinic

A large number of chemical pollutants originating from industrial agricultural and urban through the direct or indirect disruption of endocrine gland and hormone function. That is why these pollutants are known as endocrine-disrupting chemicals (EDC). By disrupting endocrine function, the EDC change certain forms of animal behaviour. This is why a direct link can be established between etology, as a scientific discipline that studied the role, function, ontogenetic and evolutionary development of behaviour from the aspect of the animal's adaption to living conditions, and ecotoxicology. In this mutual connection, the role of etology is to identify changes in animal behaviour which will serve as the first bioindicator of the presence of EDC in a certain environment, and before the occurrence of organic changes that could have lethal consequences.


2020 ◽  
Vol 21 (9) ◽  
pp. 3215
Author(s):  
Majorie B. M. van Duursen ◽  
Julie Boberg ◽  
Sofie Christiansen ◽  
Lisa Connolly ◽  
Pauliina Damdimopoulou ◽  
...  

Currently available test methods are not well-suited for the identification of chemicals that disturb hormonal processes involved in female reproductive development and function. This renders women’s reproductive health at increasing risk globally, which, coupled with increasing incidence rates of reproductive disorders, is of great concern. A woman’s reproductive health is largely established during embryonic and fetal development and subsequently matures during puberty. The endocrine system influences development, maturation, and function of the female reproductive system, thereby making appropriate hormone levels imperative for correct functioning of reproductive processes. It is concerning that the effects of human-made chemicals on the endocrine system and female reproductive health are poorly addressed in regulatory chemical safety assessment, partly because adequate test methods are lacking. Our EU-funded project FREIA aims to address this need by increasing understanding of how endocrine disrupting chemicals (EDCs) can impact female reproductive health. We will use this information to provide better test methods that enable fit-for-purpose chemical regulation and then share our knowledge, promote a sustainable society, and improve the reproductive health of women globally.


2003 ◽  
Vol 31 (3) ◽  
pp. 551-561 ◽  
Author(s):  
H Inoshita ◽  
H Masuyama ◽  
Y Hiramatsu

An endocrine-disrupting chemical (EDC) can alter endocrine functions through a variety of mechanisms, including nuclear receptor-mediated changes in protein synthesis, interference with membrane receptor binding, steroidogenesis or synthesis of other hormones. Although major chemicals have been shown to disrupt estrogenic actions mainly through their binding to estrogen receptor (ER) or androgen receptor, it is not clear how EDCs affect endocrine functions in vivo. We present evidence that the EDCs bisphenol A and phthalate activate ER-mediated transcription through interaction with TRAP220. Moreover, bisphenol A had positive effects on the interaction between ER-beta and TRAP220 and on the expression of ER-beta and TRAP220 compared with phthalate and estradiol in uterine tIssue. These data suggested that some EDCs might alter endocrine function through the change of the receptor and coactivator levels in uterine tIssue and through the different effect on the interaction between ERs and coactivator TRAP220.


2021 ◽  
Vol 15 (1-3) ◽  
pp. 213-228
Author(s):  
Laura Gaspari ◽  
Benoit Tessier ◽  
Françoise Paris ◽  
Anne Bergougnoux ◽  
Samir Hamamah ◽  
...  

This paper reviews the current knowledge on the environmental effects on penile development in humans. The specific focus is on endocrine-disrupting chemicals (EDCs), a heterogeneous group of natural or manmade substances that interfere with endocrine function, and whether they can induce hypospadias and micropenis in male neonates. Epidemiological data and animal observations first raised suspicions about environmental effects, leading to the testis dysgenesis syndrome (TDS) hypothesis. More recent research has provided stronger indications that TDS may indeed be the result of the direct or indirect effects of EDCs. Drawing on epidemiological and toxicological studies, we also report on the effects of maternal diet and substances like pesticides, phthalates, bisphenol A, and polychlorinated biphenyls. Proximity to contamination hazards and occupational exposure are also suspected to contribute to the occurrence of hypospadias and micropenis. Lastly, the cumulative effects of EDCs and the possibility of transgenerational effects, with the penile development of subsequent generations being affected, raise concerns for long-term public health.


2016 ◽  
Vol 10 (1) ◽  
pp. 54-75 ◽  
Author(s):  
Aparna Mahakali Zama ◽  
Arpita Bhurke ◽  
Mehmet Uzumcu

Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.


Sign in / Sign up

Export Citation Format

Share Document