SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change

2018 ◽  
Vol 630 ◽  
pp. 502-516 ◽  
Author(s):  
Majid Fereidoon ◽  
Manfred Koch
2017 ◽  
Vol 8 (4) ◽  
pp. 652-674 ◽  
Author(s):  
Mohsen Nasseri ◽  
Banafsheh Zahraie ◽  
Leila Forouhar

Abstract In this paper, two approaches to assess the impacts of climate change on streamflows have been used. In the first approach (direct), a statistical downscaling technique was utilized to predict future streamflows based on large-scale data of general circulation models (GCMs). In the second approach (indirect), GCM outputs were downscaled to produce local climate conditions which were then used as inputs to a hydrological simulation model. In this article, some data-mining methods such as model-tree, multivariate adaptive regression splines and group method of data handling were utilized for direct downscaling of streamflows. Projections of HadCM3 model for A2 and B2 SRES scenarios were also used to simulate future climate conditions. These evaluations were done over three sub-basins of Karkheh River basin in southwest Iran. To achieve a comprehensive assessment, a global uncertainty assessment method was used to evaluate the results of the models. The results indicated that despite simplifications included in the direct downscaling, this approach is accurate enough to be used for assessing climate change impacts on streamflows without computational efforts of hydrological modeling. Furthermore, comparing future climate projections, the uncertainty associated with elimination of hydrological modeling is estimated to be high.


2021 ◽  
Author(s):  
Fahimeh Mokhtari ◽  
Afshin Honarbakhsh ◽  
Saeed Soltani ◽  
Khodayar Abdollahi ◽  
Mehdi Pajoohesh

Abstract Drought appears as an environmentally integral part of climate change. This study was conducted to investigate the impact of climate change on climate variables, meteorological drought and pattern recognition for severe weather conditions in the Karkheh River Basin in the near future (2043-2071) and the distant future (2072-2100). The outputs of GFDL-ESM2, HadGEM2-ES, IPSL-CM5A-LR, MIROC and NoerESM1-M models were downscaled under the RCP 2.6 and RCP8.5 scenarios using the Climate Change Toolkit (CCT) at 17 meteorological stations. Then the SPEI index was calculated for the base and future periods and compared with each other. The results showed that the basin annual precipitation will likely increase in both future periods, especially in the near future. The annual maximum and minimum temperatures may also increase especially in the distant future. The rise in the maximum temperature will be possibly greater than the minimum temperature. Seasonal changes in maximum and minimum temperatures and precipitation indicate that the greatest increase in temperature and decrease in precipitation may occur in summer. Hence meteorological drought was also found to increase in the distant future. The application of the CCT model in the region showed that at least once a wet period similar to the flood conditions of 2019 will be observed for the near future. There will also be at least one similar drought in 2014 for the distant future in the region. However, in previous climate studies, future events have not been calculated based on identifying the pattern of those events in the past.


2020 ◽  
Vol 30 (1) ◽  
pp. 85-102 ◽  
Author(s):  
Qihui Chen ◽  
Hua Chen ◽  
Jun Zhang ◽  
Yukun Hou ◽  
Mingxi Shen ◽  
...  

2021 ◽  
Vol 6 (2) ◽  
pp. p55
Author(s):  
Wilawan Boonsri Prathaithep ◽  
Vilas Nitivattananon

Traditionally, flood management has concentrated on providing protection against floods using technical measures, but there is currently an international shift towards a more integrated system of flood risk management, whereby flood risk is defined as the probability of flooding multiplied by the potential consequences. Climate change is a great challenge to sustainable development and the Millennium Development Goals (MDGs) in Thailand. The main purpose of this paper is to highlight the challenges associated with the current situation and projected impacts of climate change on the disasters and the human environment in Thailand, to review and explore the potential of Strategic Environmental Assessment (SEA), and to propose SEA in making informed decisions relevant to the implementation of the new adaptation framework in a flood management plan. Thus, current measures on how Thailand is responding to the recent impacts of climate change in river basin planning are presented. It is imperative that an appropriate environmental assessment tool, such as SEA be employed in making rational decisions regarding adaptation frameworks. SEA offers a structured and proactive environmental tool for integrating of climate change adaption into formulating Policies, Plans, and Programs (PPPs) among relevant sectors.


2016 ◽  
Vol 141 (3) ◽  
pp. 533-546 ◽  
Author(s):  
Buda Su ◽  
Jinlong Huang ◽  
Xiaofan Zeng ◽  
Chao Gao ◽  
Tong Jiang

Sign in / Sign up

Export Citation Format

Share Document