scholarly journals Assessing adaptation measures on agricultural water productivity under climate change: A case study of Huai River Basin, China

2020 ◽  
Vol 721 ◽  
pp. 137777 ◽  
Author(s):  
C. Dai ◽  
X.S. Qin ◽  
W.T. Lu ◽  
Y. Huang
Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2174 ◽  
Author(s):  
Jingcai Wang ◽  
Hui Lin ◽  
Jinbai Huang ◽  
Chenjuan Jiang ◽  
Yangyang Xie ◽  
...  

Huai River Basin (HRB) is an important food and industrial production area and a frequently drought-affected basin in eastern China. It is necessary to consider the future drought development for reducing the impact of drought disasters. Three global circulation models (GCMs) from Coupled Model Intercomparison Project phase 5 (CMIP5), such as CNRM-CM5 (CNR), HadGEM2-ES (Had) and MIROC5 (MIR), were used to assessment the future drought conditions under two Representative Concentration Pathways (RCPs) scenarios, namely, RCP4.5 and RCP8.5. The standardized precipitation evapotranspiration index (SPEI), statistical method, Mann-Kendall test, and run theory were carried out to study the variations of drought tendency, frequency, and characteristics and their responses to climate change. The research showed that the three CMIP5 models differ in describing the future seasonal and annual variations of precipitation and temperature in the basin and thus lead to the differences in describing drought trends, frequency, and drought characteristics, such as drought severity, drought duration, and drought intensity. However, the drought trend, frequency, and characteristics in the future are more serious than the history. The drought frequency and characteristics tend to be strengthened under the scenario of high concentration of RCP8.5, and the drought trend is larger than that of low concentration of RCP4.5. The lower precipitation and the higher temperature are the main factors affecting the occurrence of drought. All three CMIP5 models show that precipitation would increase in the future, but it could not offset the evapotranspiration loss caused by significant temperature rise. The serious risk of drought in the future is still higher. Considering the uncertainty of climate models for simulation and prediction, attention should be paid to distinguish the effects of different models in the future drought assessment.


2015 ◽  
Vol 36 (1) ◽  
pp. 145-164 ◽  
Author(s):  
L. Wang ◽  
R. Ranasinghe ◽  
S. Maskey ◽  
P. H. A. J. M van Gelder ◽  
J. K. Vrijling

2018 ◽  
Vol 493 ◽  
pp. 31-38 ◽  
Author(s):  
Shiwei Jiang ◽  
Wuhong Luo ◽  
Luyao Tu ◽  
Yanyan Yu ◽  
Fang Fang ◽  
...  

2018 ◽  
Vol 10 (11) ◽  
pp. 3953 ◽  
Author(s):  
Farzad Emami ◽  
Manfred Koch

For water-stressed regions/countries, like Iran, improving the management of agricultural water-use in the wake of climate change and increasingly unsustainable demands is of utmost importance. One step further is then the maximization of the agricultural economic benefits, by properly adjusting the irrigated crop area pattern to optimally use the limited amount of water available. To that avail, a sequential hydro-economic model has been developed and applied to the agriculturally intensively used Zarrine River Basin (ZRB), Iran. In the first step, the surface and groundwater resources, especially, the inflow to the Boukan Dam, as well as the potential crop yields are simulated using the Soil Water Assessment Tool (SWAT) hydrological model, driven by GCM/QM-downscaled climate predictions for three future 21th-century periods under three climate RCPs. While in all nine combinations consistently higher temperatures are predicted, the precipitation pattern are much more versatile, leading to corresponding changes in the future water yields. Using the basin-wide water management tool MODSIM, the SWAT-simulated water available is then optimally distributed across the different irrigation plots in the ZRB, while adhering to various environmental/demand priority constraints. MODSIM is subsequently coupled with CSPSO to optimize (maximize) the agro-economic water productivity (AEWP) of the various crops and, subsequently, the net economic benefit (NEB), using crop areas as decision variables, while respecting various crop cultivation constraints. Adhering to political food security recommendations for the country, three variants of cereal cultivation area constraints are investigated. The results indicate considerably-augmented AEWPs, resulting in a future increase of the annual NEB of ~16% to 37.4 Million USD for the 65%-cereal acreage variant, while, at the same time, the irrigation water required is reduced by ~38%. This NEB-rise is achieved by augmenting the total future crop area in the ZRB by about 47%—indicating some deficit irrigation—wherefore most of this extension will be cultivated by the high AEWP-yielding crops wheat and barley, at the expense of a tremendous reduction of alfalfa acreage. Though presently making up only small base acreages, depending on the future period/RCP, tomato- and, less so, potato- and sugar beet-cultivation areas will also be increased significantly.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Abel Girma ◽  
Denghua Yan ◽  
Hao Wang ◽  
Xinshan Song ◽  
Tianlin Qin ◽  
...  

The present study attempted to investigate the trends of mean annual temperature, precipitation, and streamflow changes to determine their relationships in the upper Huai river basin. The Mann–Kendall (MK), Sen’s slope test estimator, and innovative trend detection (ф) (ITA) methods were used to detect the trends. According to the findings, average annual precipitation shows a descending trend (ф = −0.17) in most stations. An increasing trend was found only in Fuyang station (ф = 1.02). In all stations, the trends of mean annual temperature (ф = 0.36) were abruptly increased. During the past 57 years, the mean air temperature has considerably increased by 12°C/10a. The river streamflow showed a dramatic declining trend in all stations for the duration of the study period (1960–2016) (ф = −4.29). The climate variability in the study region affects the quantity of the streamflow. The river streamflow exhibits decreasing trends from 1965 onwards. The main possible reason for the declining stream flow in the study area is the declining amount of precipitation on some specific months due to the occurrence of climate change. The outcomes of this study could create awareness for the policymakers and members of the scientific community, informing them about the hydroclimatic evolutions across the study basin, and become an inordinate resource for advanced scientific research.


Sign in / Sign up

Export Citation Format

Share Document