Understanding the effects of sulfur input on mercury methylation in rice paddy soils

2021 ◽  
Vol 778 ◽  
pp. 146325
Author(s):  
Pei Lei ◽  
Chao Tang ◽  
Yongjie Wang ◽  
MengJie Wu ◽  
Raymond W.M. Kwong ◽  
...  
Wetlands ◽  
2013 ◽  
Vol 34 (2) ◽  
pp. 213-223 ◽  
Author(s):  
Juyoung Seo ◽  
Inyoung Jang ◽  
Gerhard Gebauer ◽  
Hojeong Kang

2018 ◽  
Vol 20 (4) ◽  
pp. 673-685 ◽  
Author(s):  
Tatiana A. Vishnivetskaya ◽  
Haiyan Hu ◽  
Joy D. Van Nostrand ◽  
Ann M. Wymore ◽  
Xiaohang Xu ◽  
...  

Sulfate-reducing bacteria and methanogens are the primary Hg-methylators in Chinese rice paddies.


2004 ◽  
Vol 2 (3) ◽  
pp. 163-169 ◽  
Author(s):  
Rohana Chandrajith ◽  
Chandrasekara Bandara Dissanayake ◽  
Heinz J�rgen Tobschall

2021 ◽  
Author(s):  
Rafael Boluda ◽  
Luis Roca Pérez ◽  
Joaquín Ramos Miras ◽  
José A. Rodríguez Martín ◽  
Jaume Bech Borras

<p>Mercury (Hg) is a metal potentially dangerous that can accumulate in soils, move to plants and cause significant ecotoxicological risks. The province of Valencia is the third in Spain and has a great agricultural, industrial and tourist vocation; it has an area of 10,763 km<sup>2</sup>, of which it devotes 272,978 ha to cultivation, most of which are irrigated soils. To the south of the city of Valencia, is the Albufera Natural Park (ZEPA area and Ramsar wetland) with 14,806 ha dedicated to rice cultivation. Pollution and burning of rice straw in rice paddies are serious problems. Therefore, the concentration of Hg in agricultural soils in the province of Valencia according to use, with an emphasis on rice paddy soils, and spatial distribution were determined; and the effects of rice straw burning on Hg accumulation on rice paddy soils was assessed. Systematic sampling was carried out throughout the agricultural area at an intensity of a grid of 8 x 8 km, in which samples composed of soil between 0 and 20 cm were collected in a total of 98 plots; and a simple random sampling in the case of rice paddies in 35 sites, distinguishing between plots where the incineration of rice straw was carried out and where it was not. The concentration of Hg was determined with a direct DMA-80 Milestone analyzer in the previously pulverized sample. The detection limit was 1.0 g kg<sup>-1</sup>, the recovery was 95.1% to 101.0% ± 4.0%. The analyses were performed in triplicate. A basic descriptive statistic (means, medians, deviations, and ANOVA) was performed. Samples were grouped according to land use. For geostatistic analysis and in order to obtain the map of the spatial distribution of the concentration of Hg in soils, the classical geostatistic technique was used by ordinary kriging. The concentration of Hg in the soils of the province of Valencia showed great variability. The soils of the rice paddies together with those dedicated to the cultivation of citrus and horticultural of the coastal plain, showed the highest levels of Hg, in contrast to the soils of the interior areas dedicated to dry crops (vineyards, olive, almond and fodder). Spatial analysis reflected a concentration gradient from west to east, suggesting that the Hg in the soils of the interior has a geochemical origin, while in the coast soils it is of anthropic origin. On the other hand, it was observed that the burning of rice straw increased the Hg concentration in rice paddy soils. This research is the first information on the distribution of Hg in the soils of the province of Valencia and a contribution that can help weigh the effects of open burning of rice straw on Valencian rice paddies.</p>


2020 ◽  
Vol 17 (6) ◽  
pp. 1451-1462 ◽  
Author(s):  
Jun Zhao ◽  
Yuanfeng Cai ◽  
Zhongjun Jia

Abstract. Soil pH is considered one of the main determinants of the assembly of globally distributed microorganisms that catalyze the biogeochemical cycles of carbon (C) and nitrogen (N). However, direct evidence for niche specialization of microorganisms in association with soil pH is still lacking. Using methane-oxidizing bacteria (methanotrophs) as a model system of C cycling, we show that pH is potentially the key driving force selecting for canonical γ (type I) and α (type II) methanotrophs in rice paddy soils. DNA-based stable isotope probing (DNA-SIP) was combined with high-throughput sequencing to reveal the taxonomic identities of active methanotrophs in physiochemically contrasting soils from six different paddy fields across China. Following microcosm incubation amended with 13CH4, methane was primarily consumed by Methylocystis-affiliated type II methanotrophs in soils with a relatively low pH (5.44–6.10), whereas Methylobacter- or Methylosarcina-affiliated type I methanotrophs dominated methane consumption in soils with a high pH (7.02–8.02). Consumption of 13CH4 contributed 0.203 % to 1.25 % of soil organic C, but no significant difference was observed between high-pH and low-pH soils. The fertilization of ammonium nitrate resulted in no significant changes in the compositions of 13C-labeled methanotrophs in the soils, although significant inhibition of methane oxidation activity was consistently observed in low-pH soils. Mantel analysis further validated that soil pH, rather than other parameters tested, had significant correlation to the variation in active methanotrophic compositions across different rice paddy soils. These results suggest that soil pH might have played a pivotal role in mediating the niche differentiation of ecologically important aerobic methanotrophs in terrestrial ecosystems and imply the importance of such niche specialization in regulating methane emissions in paddy fields following increasingly intensified input of anthropogenic N fertilizers.


Sign in / Sign up

Export Citation Format

Share Document