Profile and removal of bisphenol analogues in hospital wastewater, landfill leachate, and municipal wastewater in South China

2021 ◽  
Vol 790 ◽  
pp. 148269
Author(s):  
Zheng Huang ◽  
Jian-Liang Zhao ◽  
Cai-Yun Zhang ◽  
Wan-Li Rao ◽  
Guo-Hai Liang ◽  
...  
2018 ◽  
Vol 238 ◽  
pp. 299-305 ◽  
Author(s):  
Yi Chen ◽  
Jianzhang Fang ◽  
Lu Ren ◽  
Ruifang Fan ◽  
Jianqing Zhang ◽  
...  

2016 ◽  
Vol 51 (4) ◽  
pp. 377-387 ◽  
Author(s):  
Kshitij Ranjan ◽  
Shubhrasekhar Chakraborty ◽  
Mohini Verma ◽  
Jawed Iqbal ◽  
R. Naresh Kumar

Sequencing batch reactor (SBR) was assessed for direct co-treatment of old landfill leachate and municipal wastewater for chemical oxygen demand (COD), nutrients and turbidity removal. Nitrogen removal was achieved by sequential nitrification and denitrification under post-anoxic conditions. Initially, SBR operating conditions were optimized by varying hydraulic retention time (HRT) at 20% (v/v) landfill leachate concentration, and results showed that 6 d HRT was suitable for co-treatment. SBR performance was assessed in terms of COD, ammonia, nitrate, phosphate, and turbidity removal efficiency. pH, mixed liquor suspended solids, mixed liquor volatile suspended solids (MLVSS), and sludge volume index were monitored to evaluate stability of SBR. MLVSS indicated that biomass was able to grow even at higher concentrations of old landfill leachate. Ammonia and nitrate removal efficiency was more than 93% and 83%, respectively, whereas COD reduction was in the range of 60–70%. Phosphate and turbidity removal efficiency was 80% and 83%, respectively. Microbial growth kinetic parameters indicated that there was no inhibition of biomass growth up to 20% landfill leachate. The results highlighted that SBR can be used as an initial step for direct co-treatment of landfill leachate and municipal wastewater.


2016 ◽  
Vol 74 (8) ◽  
pp. 1992-1998 ◽  
Author(s):  
Mehrdad Farrokhi ◽  
Mostafa Mahdavianpour ◽  
Mehdi Shirzad-Siboni ◽  
Mohammad Naimi-Joubani ◽  
Hamzeh Ali Jamali

Variation in hospital wastewater (HWW) pollutants and differences with municipal wastewater (MWW), make the use of biokinetic coefficients obtained from activated sludge in the MWW treatment unprofitable for designing, modeling and evaluation of biological processes for HWW treatment. Since this study was conducted to evaluate the performance and biokinetic coefficients of a fixed bed bioreactor (FBBR) using rice husks as fixed media in HWW treatment, a new modified method was also proposed for biokinetic estimation in FBBR processes. For these purposes, five hydraulic retention times along with five sludge retention times were introduced to a pilot setup and the required data were attained. The performance process for chemical oxygen demand (COD) removal was significant (87.8–97.5%) in different conditions. The values of biokinetic coefficients k, Ks, Y and Kd were obtained as 2.42 (day−1), 55.5 (mgCOD/L), 0.2929 (mgBiomass/mgCOD) and 0.0164 (day−1), respectively. The rice husks with high surface area and high affinity for biomass accumulation on its surface are promising media for a green and environmentally friendly FBBR process. The kinetics parameters values are utilizable for modeling of FBBR using rice husks as fixed media in HWW treatment.


2009 ◽  
Vol 35 (2) ◽  
pp. 204-212 ◽  
Author(s):  
Margit Kõiv ◽  
Christina Vohla ◽  
Riho Mõtlep ◽  
Martin Liira ◽  
Kalle Kirsimäe ◽  
...  

2017 ◽  
Vol 8 (2) ◽  
pp. 234-243 ◽  
Author(s):  
Mohini Verma ◽  
R. Naresh Kumar

Abstract Landfill leachate and municipal wastewater at various ratios (1:20, 1:10, 1:7 and 1:5) were subjected to coagulation and electrocoagulation (EC). Alum was used in conventional coagulation at pH 6 and aluminum plate as electrode was used in EC at a current density of 386 A/m2 with 5 cm inter electrode spacing. Treatment efficiency was assessed from removal of chemical oxygen demand (COD), total suspended solids (TSS), turbidity, ammonia, nitrate and phosphate. At 1:5 ratio of landfill leachate to municipal wastewater, highest COD removal was with 3.8 g/L alum whereas highest turbidity removal was with 3.3 g/L alum during coagulation. EC exhibited almost similar removal efficiency for all the parameters at different ratios tested except for COD which was considerably higher at 1:20 ratio. Aluminum consumption from electrode was 0.7 g/L following EC as compared to 3.8 g/L alum used in coagulation. The amount of sludge produced was found to be higher with EC as compared to coagulation which could be due to the fact that the electrochemical method was performed for a longer duration than conventional coagulation. For minimal sludge generation, EC reaction time should be ∼30 min. Further studies with EC process on costing and sludge generation will help to advance the technology for wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document