scholarly journals Can coagulation–flocculation be an effective pre-treatment option for landfill leachate and municipal wastewater co-treatment?

2016 ◽  
Vol 8 ◽  
pp. 492-494 ◽  
Author(s):  
Mohini Verma ◽  
R. Naresh Kumar
1997 ◽  
Vol 35 (6) ◽  
pp. 63-70 ◽  
Author(s):  
Yoshimasa Watanabe ◽  
Yoshihiko Iwasaki

This paper describes a pilot plant study on the performance of a hybrid small municipal wastewater treatment system consisting of a jet mixed separator(JMS) and upgraded RBC. The JMS was used as a pre-treatment of the RBC instead of the primary clarifier. The treatment capacity of the system was fixed at 100 m3/d, corresponding to the hydraulic loading to the RBC of 117 L/m2/d. The effluent from the grid chamber at a municipal wastewater treatment plant was fed into the hybrid system. The RBC was operated using the electric power produced by a solar electric generation panel with a surface area of 8 m2 under enough sunlight. In order to reduce the organic loading to the RBC, polyaluminium chloride(PAC) was added to the JMS influent to remove the colloidal and suspended organic particles. At the operational condition where the A1 dosage and hydraulic retention time of the JMS were fixed at 5 g/m3 and 45 min., respectively, the average effluent water quality of hybrid system was as follows: TOC=8 g/m3, Total BOD=8 g/m3, SS=8 g/m3, Turbidity=6 TU, NH4-N=7 g/m3, T-P=0.5 g/m3. In this operating condition, electric power consumption of the RBC for treating unit volume of wastewater is only 0.07 KWH/m3.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1026
Author(s):  
Javier Tejera ◽  
Antonio Gascó ◽  
Daphne Hermosilla ◽  
Víctor Alonso-Gomez ◽  
Carlos Negro ◽  
...  

The objective of this trial was to assess the application of UVA-LED technology as an alternative source of irradiation for photo-Fenton processes, aiming to reduce treatment costs and provide a feasible treatment for landfill leachate. An optimized combination of coagulation with ferric chloride followed by photo-Fenton treatment of landfill leachate was optimized. Three different radiation sources were tested, namely, two conventional high-pressure mercury-vapor immersion lamps (100 W and 450 W) and a custom-designed 8 W 365 nm UVA-LED lamp. The proposed treatment combination resulted in very efficient degradation of landfill leachate (COD removal = 90%). The coagulation pre-treatment removed about 70% of the COD and provided the necessary amount of iron for the subsequent photo-Fenton treatment, and it further favored this process by acidifying the solution to an optimum initial pH of 2.8. The 90% removal of color improved the penetration of radiation into the medium and by extension improved treatment efficiency. The faster the Fenton reactions were, as determined by the stoichiometric optimum set-up reaction condition of [H2O2]0/COD0 = 2.125, the better were the treatment results in terms of COD removal and biodegradability enhancement because the chances to scavenge oxidant agents were limited. The 100 W lamp was the least efficient one in terms of final effluent quality and operational cost figures. UVA-LED technology, assessed as the application of an 8 W 365 nm lamp, provided competitive results in terms of COD removal, biodegradability enhancement, and operational costs (35–55%) when compared to the performance of the 450 W conventional lamp.


1992 ◽  
Vol 26 (8) ◽  
pp. 1025-1033 ◽  
Author(s):  
K Mergaert ◽  
B Vanderhaegen ◽  
W Verstraete

2010 ◽  
Vol 22 (1-3) ◽  
pp. 111-116 ◽  
Author(s):  
Zong-Ping Wang ◽  
Li-zhi Huang ◽  
Xiao-Nan Feng ◽  
Peng-Chao Xie ◽  
Zi-zheng Liu

2018 ◽  
Vol 13 (1) ◽  
pp. 219-228 ◽  
Author(s):  
Kasmi Mariam ◽  
Elleuch Lobna ◽  
Abidi Haifa ◽  
Cherni Yassmine ◽  
Hosni Cyrine ◽  
...  

Abstract In this study the biotreatability of Jebel Chakir landfill leachate (Tunisia) using a mixture of dairy industry reject (bactofugate) and Aloe sp. leaf gel was evaluated. The effect of Aloe gel fermentation using Saccharomyces cerevisiae yeast strain was investigated against some selected bacterial and fungal strains. The inoculation size effect of the treatment mixtures (2, 6, 10 and 12%) in the treatment efficiency was also studied. The obtained results showed that when natural Aloe gel and bactofugate mixtures were used the recorded chemical oxygen demand removal rates exceeded 56% within 48 h of treatment. Whereas, the use of the fermented Aloe gel in the treatment mixtures has promoted the organic matter removal to reach 72%.


2020 ◽  
pp. 204-220
Author(s):  
Zawawi Daud ◽  
Halizah Awang

In this chapter, the performance of combined treatment of municipal landfill leachate is reviewed. Although individual physico-chemical treatments are suitable for the removal of heavy metals and hydrolyzation of some organic compounds, a combination of two physico-chemical treatments or physico-chemical and biological is required for optimum treatment of stabilized landfill leachate. A combination of two physico-chemical treatments can give optimum results in removal of recalcitrant organic compounds from stabilized leachate, as reflected by a significant decrease of the COD values after treatment. On the other hand, a combination of physico-chemical and biological treatments is required to achieve effective removal of NH3-N and COD with a substantial amount of biodegradable organic matter. In many cases, physico-chemical treatments are suitable for pre-treatment of stabilized leachate. The objective of this paper is to highlight various types of integrated leachate treatments as it has been difficult to get optimum efficiency from single approached treatment.


2006 ◽  
Vol 1 (3) ◽  
Author(s):  
A. Vilar ◽  
S. Gil ◽  
M. A. Aparicio ◽  
C. Kennes ◽  
M. C. Veiga

The optimization of leachate treatment was investigated as well as the configuration of a biological-ozonation process. The leachate used for the experiments was diluted to 1/5 with tap water and treated anaerobically. The anaerobic effluent and the raw leachate were treated with ozone in order to increase their biodegradability getting the minimum organic matter removal. Both were submitted to the ozonation process, applying a constant ozone dose and varying the contact time. The ozonation of raw leachate produced a decrease of COD and BOD5 concentrations as well as BOD5/COD ratios, applying an ozone dose of 38.72 mg/L·min and contact times between 15 and 60 minutes. Ozonation as a pre-treatment process to the biological system did not improve the biodegradability of the raw leachate. The anaerobic effluent from the reactor fed with leachate diluted to 1/5, was subjected to an ozone dose of 34.99 mg/L·min and applying different contact times. BODf values increased from 74.75 up to 1220 mg/L and BODf/COD ratios reached values higher than 1. Then, the application of ozone to the anaerobic effluent led to the improvement of the biodegradability of the leachate as well as the BODf/COD ratio for all the contact times used.


Sign in / Sign up

Export Citation Format

Share Document