scholarly journals 3D dynamic model empowering the knowledge of the decontamination mechanisms and controlling the complex remediation strategy of a contaminated industrial site

Author(s):  
Paolo Ciampi ◽  
Carlo Esposito ◽  
Ernst Bartsch ◽  
Eduard J. Alesi ◽  
Marco Petrangeli Papini
Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1371 ◽  
Author(s):  
Paolo Ciampi ◽  
Carlo Esposito ◽  
Marco Petrangeli Papini

Delineation and understanding the geology and the hydrogeology of a contaminated site, considering its chemical and its biological aspects, are fundamental requirements for successful environmental remediation. The aim of this research is to provide some evidence about the effectiveness of a hydrogeochemical geodatabase to facilitate the integrated management, representation and analysis of heterogeneous data, enabling the appropriate selection, design and optimization of an effective remediation strategy. This study investigates a new technology for the remediation of a dense non-aqueous phase liquid aged source zone, with the aim of enhancing in situ bioremediation by coupling groundwater circulation wells with a continuous production system of electron donors. The technology was verified through a pilot test carried out at an industrial site highly contaminated by chlorinated aliphatic hydrocarbons. The multidisciplinary conceptual model confirmed a complex hydrogeological situation, with the occurrence of active residual sources in low permeability layers. The pilot test results clearly demonstrate a significant mobilization of contaminants from the low permeability zone, and the possibility of favoring the in situ natural attenuation mechanisms based upon biological reductive dechlorination. Different information related to the hydrogeochemical sphere must be integrated and taken into consideration when developing a reliable remediation strategy for contaminated sites.


2008 ◽  
Vol 45 ◽  
pp. 147-160 ◽  
Author(s):  
Jörg Schaber ◽  
Edda Klipp

Volume is a highly regulated property of cells, because it critically affects intracellular concentration. In the present chapter, we focus on the short-term volume regulation in yeast as a consequence of a shift in extracellular osmotic conditions. We review a basic thermodynamic framework to model volume and solute flows. In addition, we try to select a model for turgor, which is an important hydrodynamic property, especially in walled cells. Finally, we demonstrate the validity of the presented approach by fitting the dynamic model to a time course of volume change upon osmotic shock in yeast.


1980 ◽  
Vol 41 (C8) ◽  
pp. C8-284-C8-288 ◽  
Author(s):  
V. A. Poluchin ◽  
M. M. Dzugutov ◽  
V. F. Uchov ◽  
R. A. Vatolin

Author(s):  
S. R. Rakhmanov ◽  
V. V. Povorotnii

To form a necessary geometry of a hollow billet to be rolled at a pipe rolling line, stable dynamics of the base equipment of the automatic mill working stand has a practical meaning. Among the forces, acting on its parts and elements, significant by value short-time dynamic loads are the least studied phenomena. These dynamic loads arise during transient interaction of the hollow billet, rollers, mandrel and other mill parts at the forced grip of the hollow billet. Basing of the calculation scheme and dynamic model of the mechanical system of the ТПА 350 automatic mill working stand was accomplished. A mathematical model of dynamics of the system “hollow billet (pipe) – working stand” within accepted calculation scheme and dynamic model of the mechanical system elaborated. Influence of technological load of the rolled hollow billet variation in time was accounted, as well as variation of the mechanical system mass, and rigidity of the ТПА 350 automatic mill working stand. Differential equations of oscillation movement for four-mass model of forked sub-systems of the automatic mill working stand were made up, results of their digital calculation quoted. Dynamic displacement of the stand elements in the inter-roller gap obtained, which enabled to estimate the results of amplitude and frequency characteristics of the branches of the mill rollers setting. It was defined by calculation, that the maximum amplitude of the forced oscillations of elements of the ТПА 350 automatic mill working stand within the inter-roller gap does not exceed 2 mm. It is much higher than the accepted value of adjusting parameters of the deformation center of the ТПА 350 automatic mill. A scheme of comprehensive modernization of the rollers setting in the ТПА 350 automatic mill working stand was proposed. It was shown, that increase of rigidity of rollers setting in the ТПА 350 automatic mill working stand enables to stabilize the amplitude of forced oscillations of the working stand elements within the inter-rollers gap and considerably decrease the induced nonuniform hollow billet wall thickness and increase quality of the rolled pipes at ТПА 350.


2009 ◽  
pp. 70-93
Author(s):  
V. Manevich

The paper considers the monetary dynamic model developed by J. Tobin, the leader of Keynesian economic thought in 1970-1990. Particularly, the author examines q-theory of investment proposed by Tobin which allows to expose the relationship between supply of monetary assets and investment in real capital. Application of various tools of monetary and financial policies is also considered in its different forms. The author aspires to use Tobin's model for the analysis of processes existing in the Russian economy and to test theoretical propositions and relationships elaborated by Tobin on Russian statistics.


Sign in / Sign up

Export Citation Format

Share Document