hollow billet
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
A.T. Zhakupova ◽  
◽  
V.A. Salina ◽  

This paper presents the research results of solid structure and hollow steel billets obtained by continuous casting. To substantiate the feasibility of using a hollow billet as an initial one in the production of seamless hot-rolled pipes, a comparative analysis of the distribution of non-metallic inclusions, macro- and microstructure, as well as segregation by structural zones was carried out. When analyzing the macrostructure of a hollow billet, two distinct zones were revealed: equiaxed small and columnar crystals, which distinguishes it, compared with a solid billet, by the absence of a zone of misoriented crystals. This, in turn, helps to eliminate defects such as axial porosity and segregation. The improved quality of the macrostructure during casting of a hollow billet is explained by more favourable conditions for heat removal and a higher rate of solid-phase advance due to bilateral cooling, and less shrinkage of the melt due to its cross-sectional geometry. The distribution of nonmetallic inclusions, consisting of oxide, sulfide and oxysulfide compounds, and liquidation elements, showed that they are concentrated mainly at the boundaries of crystalline zones, and for a solid billet and in the central part. This fact is caused by the development of a zone of intense heat removal. When research the microstructures of solid and hollow workpieces, a ferrite-pearlite mixture is observed in both cases. The microstructure of the hollow billet is more dispersed, which is confirmed by durometric measurements.


Author(s):  
S. R. Rakhmanov

Nonuniformity of pipe wall thickness is one of significant indices, determining quality of hot-rolled seamless pipes. One of the reasons of increased nonuniformity arising is dynamics of exit section mechanisms of pipe rolling line (PRL). Results of study of mandrel holding mechanism dynamics of PRL presented. Dynamic models of exit section, accounting parameters of technological process and inertia of a rolled hollow billet elaborated, which enabled to determine the character of dynamic processes at the exit section of PRL automatic mill. Differential equations of exit section elements motion at the exit section of PRL automatic mill were made up. The solution of the differential equations system was obtained in a numerical form by application of Runge‒Kutta method for correspondent dynamic models of exit section based on the example of calculations for ТПА-350 automatic mill. The pattern of dynamic processes arising at the exit section was specified at realization of the whole technological process of a hollow billet rolling at automatic mill, taking into consideration alternative action from the side of deformation center and mass of the rolled hollow billet. It was shown, that the specified solution of the task for three advanced dynamic models of mechanical system considerably differs from those of the known mathematical models. It was established, that the dynamics of the mandrel holding mechanism of ТПА-350 automatic mill equivalently form the mechanism of finished pipes geometry forming. Analysis of dynamic models of the mill exit section enabled to select the necessary technological and dynamic parameters of the mechanical system, to determine stable modes of hollow billets rolling at the ТПА-350 automatic mill. Results of the study of dynamics of exit section ТПА-350 automatic mill presented. A scheme of modernization of the exit section ТПА-350 automatic mill proposed, which enables to realize rational modes of operation accounting level of mechanical system dynamics and to control quality (geometric parameters) of the rolled pipes.


Author(s):  
S. R. Rakhmanov ◽  
V. V. Povorotnii

To form a necessary geometry of a hollow billet to be rolled at a pipe rolling line, stable dynamics of the base equipment of the automatic mill working stand has a practical meaning. Among the forces, acting on its parts and elements, significant by value short-time dynamic loads are the least studied phenomena. These dynamic loads arise during transient interaction of the hollow billet, rollers, mandrel and other mill parts at the forced grip of the hollow billet. Basing of the calculation scheme and dynamic model of the mechanical system of the ТПА 350 automatic mill working stand was accomplished. A mathematical model of dynamics of the system “hollow billet (pipe) – working stand” within accepted calculation scheme and dynamic model of the mechanical system elaborated. Influence of technological load of the rolled hollow billet variation in time was accounted, as well as variation of the mechanical system mass, and rigidity of the ТПА 350 automatic mill working stand. Differential equations of oscillation movement for four-mass model of forked sub-systems of the automatic mill working stand were made up, results of their digital calculation quoted. Dynamic displacement of the stand elements in the inter-roller gap obtained, which enabled to estimate the results of amplitude and frequency characteristics of the branches of the mill rollers setting. It was defined by calculation, that the maximum amplitude of the forced oscillations of elements of the ТПА 350 automatic mill working stand within the inter-roller gap does not exceed 2 mm. It is much higher than the accepted value of adjusting parameters of the deformation center of the ТПА 350 automatic mill. A scheme of comprehensive modernization of the rollers setting in the ТПА 350 automatic mill working stand was proposed. It was shown, that increase of rigidity of rollers setting in the ТПА 350 automatic mill working stand enables to stabilize the amplitude of forced oscillations of the working stand elements within the inter-rollers gap and considerably decrease the induced nonuniform hollow billet wall thickness and increase quality of the rolled pipes at ТПА 350.


Author(s):  
O. V. Rozhkova

The article describes the experience of using deoxidizing powder in the technological process of production of hot-rolled seamless pipes; the processes that occur when applying to the inner surface of the hollow billet deoxidizing powder. The results of experimental and industrial tests of deoxidizing powder of different chemical composition are presented. The influence of the chemical composition of the deoxidizing powder on the formation of defects on the inner surface of the pipes is shown. Describes the stages of metallographic analysis of the defects on the inner surface of the pipe, provided the reasons for the formation of the defect «pipe rolling lap (skin)».


2017 ◽  
Vol 48 (4) ◽  
pp. 1981-1991
Author(s):  
Kesheng Zuo ◽  
Haitao Zhang ◽  
Ke Qin ◽  
Jianzhong Cui ◽  
Qingzhang Chen

2016 ◽  
Vol 26 (6) ◽  
pp. 1871-1888 ◽  
Author(s):  
Kesheng Zuo ◽  
Haitao Zhang ◽  
Ke Qin ◽  
Jianzhong Cui

Purpose – The purpose of this paper is to study the effect of feeding scheme on melt flow and temperature field during the steady-state of level-pour direct-chill (DC) casting of A390 alloy hollow billet and optimize the design of feeding scheme. Design/methodology/approach – Melt flow and temperature field are investigated by numerical simulation, which is based on a three-dimensional mathematical model and well verified by experiments. Findings – The numerical results reveal that both melt flow and temperature field are obviously affected by the feeding scheme. The homogeneity of melt flow and temperature field in hollow billet with the feeding scheme of modified four inlets are better than the other feeding schemes. Experimental results show that crack can be eliminated by increasing the number of feeding inlets. The primary Si size appears unaffected while the distribution of primary Si particles is highly affected by the change of feeding scheme. Only with the feeding scheme of modified four inlets can fine and uniformly distributed primary Si particles be achieved. Practical implications – The paper includes implications for the design of feeding scheme in level-pour DC casting of hollow billet for practical use. Originality/value – This paper develops different feeding schemes for level-pour DC casting of hollow billet and optimizes the design of feeding scheme.


Sign in / Sign up

Export Citation Format

Share Document