Overlooked long-chain chlorinated paraffin (LCCP) contamination in foodstuff from China

2021 ◽  
Vol 801 ◽  
pp. 149775 ◽  
Author(s):  
Lei Ding ◽  
Shiwen Zhang ◽  
Yuting Zhu ◽  
Nan Zhao ◽  
Wenbao Yan ◽  
...  
2021 ◽  
Author(s):  
Satoshi Endo

COSMO-RS-trained fragment contribution models (FCMs) to predict partition properties of chlorinated paraffin (CP) congeners were refined and extended. The improvement includes (i) the use of an improved conformer generation method for COSMO-RS, (ii) extension of training and validation sets for FCMs up to C<sub>20</sub> congeners covering short-chain (SCCPs), medium-chain (MCCPs) and long-chain CPs (LCCPs), and (iii) more realistic simulation of industrial CP mixture compositions by using a stochastic algorithm. Extension of the training set markedly improved the accuracy of model predictions for MCCPs and LCCPs, as compared to the previous study. The predicted values of the log octanol/water partition coefficients (<i>K</i><sub>ow</sub>) for CP mixtures agreed well with experimentally determined values from the literature. Using the established FCMs, this study provided a set of quantum chemically based predictions for 193 congener groups (C<sub>10–20</sub>, Cl<sub>0–21</sub>) regarding <i>K</i><sub>ow</sub>, air/water (<i>K</i><sub>aw</sub>), and octanol/air (<i>K</i><sub>oa</sub>) partition coefficients, subcooled liquid vapor pressure (VP) and aqueous solubility (<i>S</i><sub>w</sub>) in a temperature range of 5–45 °C as well as the respective enthalpy and internal energy changes.<br><br>This is a preprint version and has not yet been peer reviewed.


2021 ◽  
Author(s):  
Satoshi Endo

COSMO-RS-trained fragment contribution models (FCMs) to predict partition properties of chlorinated paraffin (CP) congeners were refined and extended. The improvement includes (i) the use of an improved conformer generation method for COSMO-RS, (ii) extension of training and validation sets for FCMs up to C<sub>20</sub> congeners covering short-chain (SCCPs), medium-chain (MCCPs) and long-chain CPs (LCCPs), and (iii) more realistic simulation of industrial CP mixture compositions by using a stochastic algorithm. Extension of the training set markedly improved the accuracy of model predictions for MCCPs and LCCPs, as compared to the previous study. The predicted values of the log octanol/water partition coefficients (<i>K</i><sub>ow</sub>) for CP mixtures agreed well with experimentally determined values from the literature. Using the established FCMs, this study provided a set of quantum chemically based predictions for 193 congener groups (C<sub>10–20</sub>, Cl<sub>0–21</sub>) regarding <i>K</i><sub>ow</sub>, air/water (<i>K</i><sub>aw</sub>), and octanol/air (<i>K</i><sub>oa</sub>) partition coefficients, subcooled liquid vapor pressure (VP) and aqueous solubility (<i>S</i><sub>w</sub>) in a temperature range of 5–45 °C as well as the respective enthalpy and internal energy changes.<br><br>This is a preprint version and has not yet been peer reviewed.


Polimery ◽  
2018 ◽  
Vol 63 (06) ◽  
pp. 424-435
Author(s):  
Xiaomei Yang ◽  
Jingyu Wang ◽  
Tianyou Song ◽  
Zhipeng Li ◽  
Jianwei Hao

2021 ◽  
Vol 69 (35) ◽  
pp. 10329-10337
Author(s):  
Xiaomei Huang ◽  
Zefeng Cui ◽  
Chenhong Ding ◽  
Qiuquan Su ◽  
Xuexian Lin ◽  
...  

Author(s):  
A. C. Reimschuessel ◽  
V. Kramer

Staining techniques can be used for either the identification of different polymers or for the differentiation of specific morphological domains within a given polymer. To reveal morphological features in nylon 6, we choose a technique based upon diffusion of the staining agent into accessible regions of the polymer.When a crystallizable polymer - such as nylon 6 - is cooled from the melt, lamellae form by chainfolding of the crystallizing long chain macromolecules. The regions between adjacent lamellae represent the less ordered amorphous domains into which stain can diffuse. In this process the lamellae will be “outlined” by the dense stain, giving rise to contrast comparable to that obtained by “negative” staining techniques.If the cooling of the polymer melt proceeds relatively slowly - as in molding operations - the lamellae are usually arranged in a radial manner. This morphology is referred to as spherulitic.


Author(s):  
J.T. Fourie

Contamination in electron microscopes can be a serious problem in STEM or in situations where a number of high resolution micrographs are required of the same area in TEM. In modern instruments the environment around the specimen can be made free of the hydrocarbon molecules, which are responsible for contamination, by means of either ultra-high vacuum or cryo-pumping techniques. However, these techniques are not effective against hydrocarbon molecules adsorbed on the specimen surface before or during its introduction into the microscope. The present paper is concerned with a theory of how certain physical parameters can influence the surface diffusion of these adsorbed molecules into the electron beam where they are deposited in the form of long chain carbon compounds by interaction with the primary electrons.


2021 ◽  
Author(s):  
Yali Wei ◽  
Yan Meng ◽  
Na Li ◽  
Qian Wang ◽  
Liyong Chen

The purpose of the systematic review and meta-analysis was to determine if low-ratio n-6/n-3 long-chain polyunsaturated fatty acid (PUFA) supplementation affects serum inflammation markers based on current studies.


2005 ◽  
Vol 72 ◽  
pp. 177-188 ◽  
Author(s):  
Félix M. Goñi ◽  
F-Xabier Contreras ◽  
L-Ruth Montes ◽  
Jesús Sot ◽  
Alicia Alonso

In the past decade, the long-neglected ceramides (N-acylsphingosines) have become one of the most attractive lipid molecules in molecular cell biology, because of their involvement in essential structures (stratum corneum) and processes (cell signalling). Most natural ceramides have a long (16-24 C atoms) N-acyl chain, but short N-acyl chain ceramides (two to six C atoms) also exist in Nature, apart from being extensively used in experimentation, because they can be dispersed easily in water. Long-chain ceramides are among the most hydrophobic molecules in Nature, they are totally insoluble in water and they hardly mix with phospholipids in membranes, giving rise to ceramide-enriched domains. In situ enzymic generation, or external addition, of long-chain ceramides in membranes has at least three important effects: (i) the lipid monolayer tendency to adopt a negative curvature, e.g. through a transition to an inverted hexagonal structure, is increased, (ii) bilayer permeability to aqueous solutes is notoriously enhanced, and (iii) transbilayer (flip-flop) lipid motion is promoted. Short-chain ceramides mix much better with phospholipids, promote a positive curvature in lipid monolayers, and their capacities to increase bilayer permeability or transbilayer motion are very low or non-existent.


Sign in / Sign up

Export Citation Format

Share Document