Estimating aboveground net primary productivity of reforested trees in an urban landscape using biophysical variables and remotely sensed data

2022 ◽  
Vol 802 ◽  
pp. 149958
Author(s):  
Mthembeni Mngadi ◽  
John Odindi ◽  
Onisimo Mutanga ◽  
Mbulisi Sibanda
2012 ◽  
Vol 34 (1) ◽  
pp. 103 ◽  
Author(s):  
Z. M. Hu ◽  
S. G. Li ◽  
J. W. Dong ◽  
J. W. Fan

The spatial annual patterns of aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of the rangelands of the Inner Mongolia Autonomous Region of China, a region in which several projects for ecosystem restoration had been implemented, are described for the years 1998–2007. Remotely sensed normalised difference vegetation index and ANPP data, measured in situ, were integrated to allow the prediction of ANPP and PUE in each 1 km2 of the 12 prefectures of Inner Mongolia. Furthermore, the temporal dynamics of PUE and ANPP residuals, as indicators of ecosystem deterioration and recovery, were investigated for the region and each prefecture. In general, both ANPP and PUE were positively correlated with mean annual precipitation, i.e. ANPP and PUE were higher in wet regions than in arid regions. Both PUE and ANPP residuals indicated that the state of the rangelands of the region were generally improving during the period of 2000–05, but declined by 2007 to that found in 1999. Among the four main grassland-dominated prefectures, the recovery in the state of the grasslands in the Erdos and Chifeng prefectures was highest, and Xilin Gol and Chifeng prefectures was 2 years earlier than Erdos and Hunlu Buir prefectures. The study demonstrated that the use of PUE or ANPP residuals has some limitations and it is proposed that both indices should be used together with relatively long-term datasets in order to maximise the reliability of the assessments.


Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 318
Author(s):  
Pamela Soto-Rogel ◽  
Juan-Carlos Aravena ◽  
Wolfgang Jens-Henrik Meier ◽  
Pamela Gross ◽  
Claudio Pérez ◽  
...  

Spatio-temporal patterns of climatic variability have effects on the environmental conditions of a given land territory and consequently determine the evolution of its productive activities. One of the most direct ways to evaluate this relationship is to measure the condition of the vegetation cover and land-use information. In southernmost South America there is a limited number of long-term studies on these matters, an incomplete network of weather stations and almost no database on ecosystems productivity. In the present work, we characterized the climate variability of the Magellan Region, southernmost Chilean Patagonia, for the last 34 years, studying key variables associated with one of its main economic sectors, sheep production, and evaluating the effect of extreme weather events on ecosystem productivity and sheep production. Our results show a marked multi-decadal character of the climatic variables, with a trend to more arid conditions for the last 8 years, together with an increase in the frequency of extreme weather events. Significant percentages of aboveground net primary productivity (ANPP) variance is explained by high precipitation, mesic temperatures, and low evapotranspiration. These conditions are, however, spatially distributed in the transition zone between deciduous forests and steppe and do not represent a general pattern for the entire region. Strong precipitation and wind velocity negatively affect lamb survival, while temperature and ANPP are positively correlated. The impact of extreme weather events on ANP and sheep production (SP) was in most of the cases significantly negative, with the exception of maximum temperature that correlated with an increase of ANPP, and droughts that showed a non-significant negative trend in ANPP. The examination of these relationships is urgent under the current scenario of climate change with the acceleration of the environmental trends here detected.


Sign in / Sign up

Export Citation Format

Share Document