scholarly journals Biotic and abiotic reductive dechlorination of chloroethenes in aquitards

Author(s):  
Diana Puigserver ◽  
Jofre Herrero ◽  
Xènia Nogueras ◽  
Amparo Cortés ◽  
Beth L. Parker ◽  
...  
1989 ◽  
Vol 24 (2) ◽  
pp. 299-322 ◽  
Author(s):  
R. M. Baxter

Abstract It is generally recognized that reductive processes are more important than oxidative ones in transforming, degrading and mineralizing many environmental contaminants. One process of particular importance is reductive dehalogenation, i.e., the replacement of a halogen atom (most commonly a chlorine atom) by a hydrogen atom. A number of different mechanisms are involved in these reactions. Photochemical reactions probably play a role in some instances. Aliphatic compounds such as chloroethanes, partly aliphatic compounds such as DDT, and alicyclic compounds such as hexachlorocyclohexane are readily dechlorinated in the laboratory by reaction with reduced iron porphyrins such as hematin. Many of these are also dechlorinated by cultures of certain microorganisms, probably by the same mechanism. Such compounds, with a few exceptions, have been found to undergo reductive dechlorination in the environment. Aromatic compounds such as halobenzenes, halophenols and halobenzoic acids appear not to react with reduced iron porphyrins. Some of these however undergo reductive dechlorination both in the environment and in the laboratory. The reaction is generally associated with methanogenic bacteria. There is evidence for the existence of a number of different dechlorinating enzymes specific for different isomers. Recently it has been found that many components of polychlorinated biphenyls (PCBs), long considered to be virtually totally resistant to environmental degradation, may be reductively dechlorinated both in the laboratory and in nature. These findings suggest that many environmental contaminants may prove to be less persistent than was previously feared.


2016 ◽  
Vol 23 (18) ◽  
pp. 18724-18741 ◽  
Author(s):  
Diana Puigserver ◽  
Jofre Herrero ◽  
Mònica Torres ◽  
Amparo Cortés ◽  
Ivonne Nijenhuis ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (20) ◽  
pp. 12086-12094
Author(s):  
Tielong Li ◽  
Jiaxin Wen ◽  
Bingjie Li ◽  
Shihu Ding ◽  
Wei Wang

To explore the application of mineral in bioremediation of contaminated aquifers, this study investigated tourmaline-induced changes in TCE degradation, community structure, cell proliferation and gene expression of dechlorinating bacteria.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 405
Author(s):  
Edoardo Dell’Armi ◽  
Marco Zeppilli ◽  
Bruna Matturro ◽  
Simona Rossetti ◽  
Marco Petrangeli Papini ◽  
...  

Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants due to their improper use in several industrial activities. Specialized microorganisms are able to perform the reductive dechlorination (RD) of high-chlorinated CAHs such as perchloroethylene (PCE), while the low-chlorinated ethenes such as vinyl chloride (VC) are more susceptible to oxidative mechanisms performed by aerobic dechlorinating microorganisms. Bioelectrochemical systems can be used as an effective strategy for the stimulation of both anaerobic and aerobic microbial dechlorination, i.e., a biocathode can be used as an electron donor to perform the RD, while a bioanode can provide the oxygen necessary for the aerobic dechlorination reaction. In this study, a sequential bioelectrochemical process constituted by two membrane-less microbial electrolysis cells connected in series has been, for the first time, operated with synthetic groundwater, also containing sulphate and nitrate, to simulate more realistic process conditions due to the possible establishment of competitive processes for the reducing power, with respect to previous research made with a PCE-contaminated mineral medium (with neither sulphate nor nitrate). The shift from mineral medium to synthetic groundwater showed the establishment of sulphate and nitrate reduction and caused the temporary decrease of the PCE removal efficiency from 100% to 85%. The analysis of the RD biomarkers (i.e., Dehalococcoides mccartyi 16S rRNA and tceA, bvcA, vcrA genes) confirmed the decrement of reductive dechlorination performances after the introduction of the synthetic groundwater, also characterized by a lower ionic strength and nutrients content. On the other hand, the system self-adapted the flowing current to the increased demand for the sulphate and nitrate reduction, so that reducing power was not in defect for the RD, although RD coulombic efficiency was less.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1949
Author(s):  
Edoardo Masut ◽  
Alessandro Battaglia ◽  
Luca Ferioli ◽  
Anna Legnani ◽  
Carolina Cruz Viggi ◽  
...  

In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes.


2017 ◽  
Vol 4 (12) ◽  
pp. 2286-2296 ◽  
Author(s):  
Li-Zhi Huang ◽  
Steen Uttrup Pedersen ◽  
Emil Tveden Bjerglund ◽  
Paolo Lamagni ◽  
Marianne Glasius ◽  
...  

MoS2nanosheets were grown directly on carbon felt, which is used as flow-through electrode for reductive dechlorination.


2007 ◽  
Vol 144 (1-2) ◽  
pp. 334-339 ◽  
Author(s):  
Rong Cheng ◽  
Jian-long Wang ◽  
Wei-xian Zhang

Sign in / Sign up

Export Citation Format

Share Document