scholarly journals Effects of the Feeding Solution Composition on a Reductive/Oxidative Sequential Bioelectrochemical Process for Perchloroethylene Removal

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 405
Author(s):  
Edoardo Dell’Armi ◽  
Marco Zeppilli ◽  
Bruna Matturro ◽  
Simona Rossetti ◽  
Marco Petrangeli Papini ◽  
...  

Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants due to their improper use in several industrial activities. Specialized microorganisms are able to perform the reductive dechlorination (RD) of high-chlorinated CAHs such as perchloroethylene (PCE), while the low-chlorinated ethenes such as vinyl chloride (VC) are more susceptible to oxidative mechanisms performed by aerobic dechlorinating microorganisms. Bioelectrochemical systems can be used as an effective strategy for the stimulation of both anaerobic and aerobic microbial dechlorination, i.e., a biocathode can be used as an electron donor to perform the RD, while a bioanode can provide the oxygen necessary for the aerobic dechlorination reaction. In this study, a sequential bioelectrochemical process constituted by two membrane-less microbial electrolysis cells connected in series has been, for the first time, operated with synthetic groundwater, also containing sulphate and nitrate, to simulate more realistic process conditions due to the possible establishment of competitive processes for the reducing power, with respect to previous research made with a PCE-contaminated mineral medium (with neither sulphate nor nitrate). The shift from mineral medium to synthetic groundwater showed the establishment of sulphate and nitrate reduction and caused the temporary decrease of the PCE removal efficiency from 100% to 85%. The analysis of the RD biomarkers (i.e., Dehalococcoides mccartyi 16S rRNA and tceA, bvcA, vcrA genes) confirmed the decrement of reductive dechlorination performances after the introduction of the synthetic groundwater, also characterized by a lower ionic strength and nutrients content. On the other hand, the system self-adapted the flowing current to the increased demand for the sulphate and nitrate reduction, so that reducing power was not in defect for the RD, although RD coulombic efficiency was less.

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1949
Author(s):  
Edoardo Masut ◽  
Alessandro Battaglia ◽  
Luca Ferioli ◽  
Anna Legnani ◽  
Carolina Cruz Viggi ◽  
...  

In this study, wood mulch-based amendments were tested in a bench-scale microcosm experiment in order to assess the treatability of saturated soils and groundwater from an industrial site contaminated by chlorinated ethenes. Wood mulch was tested alone as the only electron donor in order to assess its potential for stimulating the biological reductive dechlorination. It was also tested in combination with millimetric iron filings in order to assess the ability of the additive to accelerate/improve the bioremediation process. The efficacy of the selected amendments was compared with that of unamended control microcosms. The results demonstrated that wood mulch is an effective natural and low-cost electron donor to stimulate the complete reductive dechlorination of chlorinated solvents to ethene. Being a side-product of the wood industry, mulch can be used in environmental remediation, an approach which perfectly fits the principles of circular economy and addresses the compelling needs of a sustainable and low environmental impact remediation. The efficacy of mulch was further improved by the co-presence of iron filings, which accelerated the conversion of vinyl chloride into the ethene by increasing the H2 availability rather than by catalyzing the direct abiotic dechlorination of contaminants. Chemical analyses were corroborated by biomolecular assays, which confirmed the stimulatory effect of the selected amendments on the abundance of Dehalococcoides mccartyi and related reductive dehalogenase genes. Overall, this paper further highlights the application potential and environmental sustainability of wood mulch-based amendments as low-cost electron donors for the biological treatment of chlorinated ethenes.


2012 ◽  
Vol 78 (18) ◽  
pp. 6630-6636 ◽  
Author(s):  
Jun Yan ◽  
Kirsti M. Ritalahti ◽  
Darlene D. Wagner ◽  
Frank E. Löffler

ABSTRACTDehalococcoides mccartyistrains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems.Dehalococcoideslacks the ability forde novocorrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B12) for growth. In contrast,Geobacter lovleyi, which dechlorinates tetrachloroethene tocis-1,2-dichloroethene (cis-DCE), and the nondechlorinating speciesGeobacter sulfurreducenshave complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium.G. lovleyi-D. mccartyistrain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, andcis-DCE was dechlorinated to vinyl chloride and ethene concomitant withDehalococcoidesgrowth. In contrast, negligible increase inDehalococcoides16S rRNA gene copies and insignificant dechlorination occurred inG. sulfurreducens-D. mccartyistrain BAV1 or strain FL2 cocultures. Apparently,G. lovleyiproduces a cobamide that complementsDehalococcoides' nutritional requirements, whereasG. sulfurreducensdoes not. Interestingly,Dehalococcoidesdechlorination activity and growth could be restored inG. sulfurreducens-Dehalococcoidescocultures by adding 10 μM 5′,6′-dimethylbenzimidazole. Observations made with theG. sulfurreducens-Dehalococcoidescocultures suggest that the exchange of the lower ligand generated a cobalamin, which supportedDehalococcoidesactivity. These findings have implications forin situbioremediation and suggest that the corrinoid metabolism ofDehalococcoidesmust be understood to faithfully predict, and possibly enhance, reductive dechlorination activities.


2019 ◽  
Vol 8 (33) ◽  
Author(s):  
Jun Yan ◽  
Yi Yang ◽  
Xiuying Li ◽  
Frank E. Löffler

Dehalococcoides mccartyi strain FL2 couples growth to hydrogen oxidation and reductive dechlorination of trichloroethene and cis- and trans-1,2-dichloroethenes. Strain FL2 has a 1.42-Mb genome with a G+C content of 47.0% and carries 1,465 protein-coding sequences, including 24 reductive dehalogenase genes.


Planta ◽  
1978 ◽  
Vol 140 (3) ◽  
pp. 261-263 ◽  
Author(s):  
A. F. Mann ◽  
D. P. Hucklesby ◽  
E. J. Hewitt

2022 ◽  
Vol 10 (1) ◽  
pp. 101
Author(s):  
Marta M. Rossi ◽  
Bruna Matturro ◽  
Neda Amanat ◽  
Simona Rossetti ◽  
Marco Petrangeli Papini

Towards chlorinated solvents, the effectiveness of the remediation strategy can be improved by combining a biological approach (e.g., anaerobic reductive dechlorination) with chemical/physical treatments (e.g., adsorption). A coupled adsorption and biodegradation (CAB) process for trichloroethylene (TCE) removal is proposed in a biofilm–biochar reactor (BBR) to assess whether biochar from pine wood (PWB) can support a dechlorinating biofilm by combining the TCE (100 µM) adsorption. The BBR operated for eight months in parallel with a biofilm reactor (BR)—no PWB (biological process alone), and with an abiotic biochar reactor (ABR)—no dechlorinating biofilm (only an adsorption mechanism). Two flow rates were investigated. Compared to the BR, which resulted in a TCE removal of 86.9 ± 11.9% and 78.73 ± 19.79%, the BBR demonstrated that PWB effectively adsorbs TCE and slows down the release of its intermediates. The elimination of TCE was quantitative, with 99.61 ± 0.79% and 99.87 ± 0.51% TCE removal. Interestingly, the biomarker of the reductive dechlorination process, Dehalococcoides mccartyi, was found in the BRR (9.2 × 105 16S rRNA gene copies/g), together with the specific genes tceA, bvcA, and vcrA (8.16 × 106, 1.28 × 105, and 8.01 × 103 gene copies/g, respectively). This study suggests the feasibility of biochar to support the reductive dechlorination of D. mccartyi, opening new frontiers for field-scale applications.


2016 ◽  
Vol 4 (6) ◽  
Author(s):  
Olivia Molenda ◽  
Shuiquan Tang ◽  
Elizabeth A. Edwards

Dehalococcoides mccartyi strain WBC-2 dechlorinates carcinogen vinyl chloride to ethene in the West Branch Canal Creek (WBC-2) microbial consortium used for bioaugmentation. We assembled and closed the complete genome sequence of this prokaryote using metagenomic sequencing from an enrichment culture.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 959 ◽  
Author(s):  
Arianna Callegari ◽  
Silvia Bolognesi ◽  
Daniele Cecconet

Nitrate groundwater contamination is an issue of global concern that has not been satisfactorily and efficiently addressed, yet. In this study, a 2-stage, sequential bioelectrochemical system (BES) was run to perform autotrophic denitrification of synthetic groundwater. The system was run at a 75.6 mgNO3−-N L−1NCC d−1 nitrate loading rate, achieving almost complete removal of nitrate (>93%) and Total Nitrogen (TN) (>93%). After treatment in the first stage reactor values of effluent nitrate compatible with the EU and USA limits for drinking water (<11.3 and 10 mgNO3−-N L−1, respectively) were achieved. Nitrite and nitrous oxide were observed in the first stage’s effluent, and were then successfully removed in the second stage. The observed nitrate removal rate was 73.4 ± 1.3 gNO3−-N m−3NCC d−1, while the total nitrogen removal rate was 73.1 ± 1.2 gN m−3NCC d−1. Specific energy consumptions of the system were 0.80 ± 0.00 kWh m−3, 18.80 ± 0.94 kWh kgNO3−-N−1 and 18.88 ± 0.95 kWh kgN−1. Combination of two denitrifying BES in series herein described proved to be effective.


Sign in / Sign up

Export Citation Format

Share Document