Improving monitoring of fish health in the oil sands region using regularization techniques and water quality variables

Author(s):  
Patrick G. McMillan ◽  
Zeny Feng ◽  
Lorna E. Deeth ◽  
Tim J. Arciszewski
2009 ◽  
Vol 4 (1) ◽  
pp. 125
Author(s):  
Akhmad Mustafa ◽  
Rachmansyah Rachmansyah ◽  
Dody Dharmawan Trijuno ◽  
Ruslaini Ruslaini

Rumput laut (Gracilaria verrucosa) telah dibudidayakan di tambak tanah sulfat masam dengan kualitas dan kuantitas produksi yang relatif tinggi. Oleh karena itu, dilakukan penelitian yang bertujuan untuk mengetahui peubah kualitas air yang mempengaruhi laju pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur Provinsi Sulawesi Selatan. Pemeliharaan rumput laut dilakukan di 30 petak tambak  terpilih selama 6 minggu. Bibit rumput laut dengan bobot 100 g basah ditebar dalam hapa berukuran 1,0 m x 1,0 m x 1,2 m. Peubah tidak bebas yang diamati adalah laju pertumbuhan relatif, sedangkan peubah bebas adalah peubah kualitas air yang meliputi: intensitas cahaya, salinitas, suhu, pH, karbondioksida, nitrat, amonium, fosfat, dan besi. Analisis regresi berganda digunakan untuk menentukan peubah bebas yang dapat digunakan untuk memprediksi peubah tidak bebas. Hasil penelitian menunjukkan bahwa laju pertumbuhan relatif rumput laut di tambak tanah sulfat masam berkisar antara 1,52% dan 3,63%/hari dengan rata-rata 2,88% ± 0,56%/hari. Di antara 9 peubah kualitas air yang diamati ternyata hanya 5 peubah kualitas air yaitu: nitrat, salinitas, amonium, besi, dan fosfat yang mempengaruhi pertumbuhan rumput laut secara nyata. Untuk meningkatkan pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur dapat dilakukan dengan pemberian pupuk yang mengandung nitrogen untuk meningkatkan kandungan amonium dan nitrat serta pemberian pupuk yang mengandung fosfor untuk meningkatkan kandungan fosfat sampai pada nilai tertentu, melakukan remediasi untuk menurunkan kandungan besi serta memelihara rumput laut pada salinitas air yang lebih tinggi, tetapi tidak melebihi 30 ppt.Seaweed (Gracilaria verrucosa) has been cultivated in acid sulfate soil-affected ponds with relatively high quality and quantity of seaweed production. A research has been conducted to study water quality variables that influence the growth of seaweed in acid sulfate soil-affected ponds of Angkona Sub-district East Luwu Regency South Sulawesi Province. Cultivation of seaweed was done for six weeks in 30 selected brackishwater ponds. Seeds of seaweed with weight of 100 g were stocked in hapa sized 1.0 m x 1.0 m x 1.2 m. Dependent variable that was observed was specific growth rate, whereas independent variables were water quality variables including light intensity, salinity, temperature, pH, carbondioxide, nitrate, ammonium, phosphate, and iron. Analyses of multiple regressions were used to determine the independent variables which could be used to predict the dependent variable. Research result indicated that relative growth rate of seaweed in acid sulfate soils-affected brackishwater ponds ranged from 1.52% to 3.63%/day with 2.88% ± 0.56%/day in average. Among nine observed water quality variables, only five variables namely: nitrate, salinity, ammonium, phosphate and iron influence significantly on the growth of seaweed in acid sulfate soils-affected brackishwater ponds. The growth of seaweed in acid sulfate soils-affected brackishwater ponds of Angkona District East Luwu Regency, can be improved by using nitrogen-based fertilizers to increase ammonium and nitrate contents and also fertilizers which contain phosphorus to improve phosphate content to a certain level. Pond remediation to decrease iron content and also rearing seaweed at higher salinity (but less than 30 ppt) can also be alternatives to increase the growth of seaweed.


Author(s):  
Nesma Eltoukhy Allam ◽  
Nikolas Romaniuk ◽  
Mike Tate ◽  
Mohamed N.A. Meshref ◽  
Bipro R. Dhar ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 1683
Author(s):  
Nandini Menon ◽  
Grinson George ◽  
Rajamohananpillai Ranith ◽  
Velakandy Sajin ◽  
Shreya Murali ◽  
...  

Turbidity and water colour are two easily measurable properties used to monitor pollution. Here, we highlight the utility of a low-cost device—3D printed, hand-held Mini Secchi disk (3DMSD) with Forel-Ule (FU) colour scale sticker on its outer casing—in combination with a mobile phone application (‘TurbAqua’) that was provided to laymen for assessing the water quality of a shallow lake region after demolition of four high-rise buildings on the shores of the lake. The demolition of the buildings in January 2020 on the banks of a tropical estuary—Vembanad Lake (a Ramsar site) in southern India—for violation of Indian Coastal Regulation Zone norms created public uproar, owing to the consequences of subsequent air and water pollution. Measurements of Secchi depth and water colour using the 3DMSD along with measurements of other important water quality variables such as temperature, salinity, pH, and dissolved oxygen (DO) using portable instruments were taken for a duration of five weeks after the demolition to assess the changes in water quality. Paired t-test analyses of variations in water quality variables between the second week of demolition and consecutive weeks up to the fifth week showed that there were significant increases in pH, dissolved oxygen, and Secchi depth over time, i.e., the impact of demolition waste on the Vembanad Lake water quality was found to be relatively short-lived, with water clarity, colour, and DO returning to levels typical of that period of year within 4–5 weeks. With increasing duration after demolition, there was a general decrease in the FU colour index to 17 at most stations, but it did not drop to 15 or below, i.e., towards green or blue colour indicating clearer waters, during the sampling period. There was no significant change in salinity from the second week to the fifth week after demolition, suggesting little influence of other factors (e.g., precipitation or changes in tidal currents) on the inferred impact of demolition waste. Comparison with pre-demolition conditions in the previous year (2019) showed that the relative changes in DO, Secchi depth, and pH were very high in 2020, clearly depicting the impact of demolition waste on the water quality of the lake. Match-ups of the turbidity of the water column immediately before and after the demolition using Sentinel 2 data were in good agreement with the in situ data collected. Our study highlights the power of citizen science tools in monitoring lakes and managing water resources and articulates how these activities provide support to Sustainable Development Goal (SDG) targets on Health (Goal 3), Water quality (Goal 6), and Life under the water (Goal 14).


2016 ◽  
Vol 15 (4) ◽  
pp. 11-22
Author(s):  
H M Ashashree ◽  
H A Sayeswara ◽  
K L Naik ◽  
N Kumara Swamy ◽  
Nafeesa Begum

Fresh water wetlands are fragile ecosystems, which are fast deterioring and shrinking due to manmade activities. The fish composition of Huchharayanakere of Shikaripura was studied for a period of twelve months from January to December 2015. The icthyo-faunal diversity of this pond confirmed the occurrence of 13 species of fishes belonging to 5 families. The family Cyprinidae represented by 9 species. Families Anabantidae, Bagridae, Clupeidae and Notopteridae were represented by only a single species. Simultaneously the physico-chemical condition of the water body revealed that water quality is suitable for fish culture. The study of fish fauna of an aquatic body is useful for planning of fisheries development. The pond needs proper management and utilization of this fish wealth and sustainable steps to monitor and conserve the fish health. The present study revealed that Huchharayanakere of Shikaripura harbors wide varieties of fish with economic importance in local and global trade. The study will provide future strategies for development and fish conservation.


Author(s):  
John Headley ◽  
Kerry Peru ◽  
Ian Vander Meulen

Advances in mass spectrometry in the authors’ and key collaborators’ research are reviewed for analysis of oil sands naphthenic acids fraction compounds (NAFCs) and industrial process chemicals, sulfolane and alkanolamines in wetlands. Focus is given to developments of analyses of NAFCs in constructed wetland treatment systems and natural wetlands in the Athabasca oil sands region, Alberta, Canada. The analytical developments are applied to show the utility of wetlands to sequester and oxidize oil sands naphthenic acids. The advancements in molecular characterization led to the first application of high-resolution mass spectrometry (Fourier transform ion-cyclotron resonance; and Orbitrap mass spectrometry) for elucidation of toxic mono-and dicarboxylic NAFCs in oil sands environmental samples. Key findings reveal that oil sands NAFCs are not limited to saturated structures, but contain a diverse range of components, many of which contain S, N, heteroatomic species and aromatic species. Other developments of mass spectrometry methods for industrial process chemicals show for the first time that the completely water-miscible chemical, sulfolane, translocate to upper portions of cattails at natural wetland sites in the Canadian environment. Likewise, wetland-plant mediated changes of complex mixtures of alkanolamines were revealed based on the coupling of ion chromatography mass spectrometry and ultrahigh resolution mass spectrometry. The advances in mass spectrometry are of particular benefit to Canada, for development of soil and water quality guidelines for oil sands NAFCs and process chemicals. In turn, the water quality guidelines serve to protect Canadian aquatic environments.


Sign in / Sign up

Export Citation Format

Share Document