scholarly journals The use of treatment wetlands plants for protein and cellulose valorization in biorefinery platform

Author(s):  
M.A. Rodriguez-Dominguez ◽  
B.E. Bonefeld ◽  
M. Ambye-Jensen ◽  
H. Brix ◽  
C.A. Arias
Keyword(s):  
Author(s):  
Ismael Vera-Puerto ◽  
Hugo Valdés ◽  
Christian Correa ◽  
Valeria Perez ◽  
Roberto Gomez ◽  
...  

The aim of this work was to evaluate the performance of vertical subsurface flow treatment wetlands (VSSF TWs) for treating rural domestic wastewater when strategies such as bed depth reduction and media change are used in combination with bottom saturation. Two treatment wetland systems were implemented: normal (VF-N), with a bed depth of 1.0 m, and modified (VF-M), with a bed depth of 0.5 m and a bottom layer of natural zeolite. Schoenoplectus californicus was used as experimental plant. These two treatment systems were operated at a hydraulic loading rate of 120 mm/d in two phases. Phase I did not use bottom saturation, while Phase II involved a bottom saturation of the zeolite layer of the VF-M system. The results show that bed depth reduction did not have a significant effect (p > 0.05) in terms of organic matter, solids, and ammonium removal. Conversely, it had a significant influence (p < 0.05) on phosphate as well as a negative effect on pathogen removal. This influence could be explained by initial media capacity for phosphorus removal and filtration importance in the case of pathogens. Partial saturation only had a positive influence on total nitrogen removal. The addition of a bottom layer of natural zeolite showed no positive effect on nutrient removal. The plant showed adaptation and positive development in both VF-N and VF-M. The water balance showed that water loss was not influenced by bed depth reduction. Therefore, according to the previous results, a combination of the proposal modifications to VSSF TWs can be introduced for treating rural domestic wastewater.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 389
Author(s):  
German Dario Martinez-Carvajal ◽  
Laurent Oxarango ◽  
Jérôme Adrien ◽  
Pascal Molle ◽  
Nicolas Forquet

Clogging constitutes a major operational issue for treatment wetlands. The rest period is a key feature of French Vertical Flow (VF) treatment wetlands and serves to mitigate clogging. An ex-situ drying experiment was performed to mimic the rest period and record structural changes in the porous media using X-ray Computed Tomography (CT). Samples containing the deposit and gravel layers of a first stage French VF treatment wetland were extracted and left to dry in a control environment. Based on CT scans, three phases were identified (voids, biosolids, and gravels). The impact of the rest period was assessed by means of different pore-scale variables. Ultimately, the volume of biosolids had reduced to 58% of its initial value, the deposit layer thickness dropped to 68% of its initial value, and the void/biosolid specific surface area ratio increased from a minimum value of 1.1 to a maximum of 4.2. Cracks greater than 3 mm developed at the uppermost part of the deposit layer, while, in the gravel layer, the rise in void volume corresponds to pores smaller than 2 mm in diameter. Lastly, the air-filled microporosity is estimated to have increased by 0.11 v/v.


2014 ◽  
Vol 55 (13) ◽  
pp. 3587-3612 ◽  
Author(s):  
Rattandeep Singh ◽  
Sandeep Gupta ◽  
S. Raman ◽  
Prodyut Chakraborty ◽  
Puneet Sharma ◽  
...  

2005 ◽  
Vol 96 (8) ◽  
pp. 937-948 ◽  
Author(s):  
Beverly S. Collins ◽  
Rebecca R. Sharitz ◽  
Daniel P. Coughlin

2003 ◽  
Vol 2003 (9) ◽  
pp. 391-391
Author(s):  
Brad L. Inman ◽  
Mike Thomas ◽  
Jay Kirk
Keyword(s):  

2012 ◽  
Vol 65 (1) ◽  
pp. 76-99 ◽  
Author(s):  
K. Haarstad ◽  
H. J. Bavor ◽  
T. Mæhlum

A literature review shows that more than 500 compounds occur in wetlands, and also that wetlands are suitable for removing these compounds. There are, however, obvious pitfalls for treatment wetlands, the most important being the maintenance of the hydraulic capacity and the detention time. Treatment wetlands should have an adapted design to target specific compounds. Aquatic plants and soils are suitable for wastewater treatment with a high capacity of removing nutrients and other substances through uptake, sorption and microbiological degradation. The heavy metals Cd, Cu, Fe, Ni and Pb were found to exceed limit values. The studies revealed high values of phenol and SO4. No samples showed concentrations in sediments exceeding limit values, but fish samples showed concentrations of Hg exceeding the limit for fish sold in the European Union (EU). The main route of metal uptake in aquatic plants was through the roots in emergent and surface floating plants, whereas in submerged plants roots and leaves take part in removing heavy metals and nutrients. Submerged rooted plants have metal uptake potential from water as well as sediments, whereas rootless plants extracted metals rapidly only from water. Caution is needed about the use of SSF CWs (subsurface flow constructed wetlands) for the treatment of metal-contaminated industrial wastewater as metals are shifted to another environmental compartment, and stable redox conditions are required to ensure long-term efficiency. Mercury is one of the most toxic heavy metals and wetlands have been shown to be a source of methylmercury. Methyl Hg concentrations are typically approximately 15% of Hgt (total mercury). In wetlands polycyclic aromatic hydrocarbons (PAH), bisphenol A, BTEX, hydrocarbons including diesel range organics, glycol, dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyls (PCB), cyanide, benzene, chlorophenols and formaldehyde were found to exceed limit values. In sediments only PAH and PCB were found exceeding limit values. The pesticides found above limit values were atrazine, simazine, terbutylazine, metolachlor, mecoprop, endosulfan, chlorfenvinphos and diuron. There are few water quality limit values of these compounds, except for some well-known endocrine disrupters such as nonylphenol, phtalates, etc.


Sign in / Sign up

Export Citation Format

Share Document