An assessment of agricultural waste cellulosic biofuel for improved combustion and emission characteristics

Author(s):  
Shengbo Ge ◽  
S. Manigandan ◽  
Thangavel Mathimani ◽  
Sakeenabi Basha ◽  
Changlei Xia ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shannon M. Hoffman ◽  
Maria Alvarez ◽  
Gilad Alfassi ◽  
Dmitry M. Rein ◽  
Sergio Garcia-Echauri ◽  
...  

Abstract Background Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures. Results In this work, we show that cellulosic emulsions hydrolyze rapidly at temperatures tolerable to yeast, reaching up to 40-fold higher conversion in the first hour compared to microcrystalline cellulose (MCC). To evaluate suitable conditions for the eSSF process, we explored the upper temperature limits for the thermotolerant yeasts Kluyveromyces marxianus and Ogataea polymorpha, as well as Saccharomyces cerevisiae, and observed robust fermentation at up to 46, 50, and 42 °C for each yeast, respectively. We show that the eSSF process reaches high ethanol titers in short processing times, and produces close to theoretical yields at temperatures as low as 30 °C. Finally, we demonstrate the transferability of the eSSF technology to other products by producing the advanced biofuel isobutanol in a light-controlled eSSF using optogenetic regulators, resulting in up to fourfold higher titers relative to MCC SSF. Conclusions The eSSF process addresses the main challenges of cellulosic biofuel production by increasing saccharification rate at temperatures tolerable to yeast. The rapid hydrolysis of these emulsions at low temperatures permits fermentation using non-thermotolerant yeasts, short processing times, low enzyme loads, and makes it possible to extend the process to chemicals other than ethanol, such as isobutanol. This transferability establishes the eSSF process as a platform for the sustainable production of biofuels and chemicals as a whole.


2021 ◽  
pp. 0958305X2199799
Author(s):  
Minwook Kim ◽  
Seunghyun Jo ◽  
Jiyun Woo ◽  
Eui-Chan Jeon

Biomass burning is largely divided into six types: open burning, agricultural waste burning, meat and fish roasts, wood stoves and boilers, furnaces, and charcoal burners. Biomass burning is largely characterized by incomplete combustion due to the difficulty of appropriate control, which results in the emission of a large amount of air pollutants and the generation of harmful substances such as volatile organic compounds (National Institute of Environmental Research, 2014). Burning agricultural residue releases a large amount of fine particulate matter (PM). Open burning of agricultural residue, burning agricultural residues without incineration facility, in the rural areas are frequently observed Therefore, management based on accurate analysis of emission characteristics is needed. In Korea, most agricultural residues except for rice straw are incinerated in the field. Agricultural residues with a high incineration ratio are Chili and Perilla. The characteristics of PM emission by agricultural residues combustion were analyzed for Chili and Perilla. PM measuring equipment are Stack sampling system and Cascade Impactor (PM10, PM2.5 Impactor, Johnas, Paul Gothe GmBH). This study, the emission characteristics of PM-10, PM-2.5 generated in the combustion of agricultural residues were examined in consideration of moisture content.


2001 ◽  
Vol 84 (5) ◽  
pp. 1-9
Author(s):  
Hidenori Mimura ◽  
Hidetaka Shimawaki ◽  
Kuniyoshi Yokoo

2020 ◽  
Vol 108 (2) ◽  
pp. 203
Author(s):  
Samia Djadouf ◽  
Nasser Chelouah ◽  
Abdelkader Tahakourt

Sustainable development and environmental challenges incite to valorize local materials such as agricultural waste. In this context, a new ecological compressed earth blocks (CEBS) with addition of ground olive stone (GOS) was proposed. The GOS is added as partial clay replacement in different proportions. The main objective of this paper is to study the effect of GOS levels on the thermal properties and mechanical behavior of CEB. We proceeded to determining the optimal water content and equivalent wet density by compaction using a hydraulic press, at a pressure of 10 MPa. The maximum compressive strength is reached at 15% of the GOS. This percentage increases the mechanical properties by 19.66%, and decreases the thermal conductivity by 37.63%. These results are due to the optimal water responsible for the consolidation and compactness of the clay matrix. The substitution up to 30% of GOS shows a decrease of compressive strength and thermal conductivity by about 38.38% and 50.64% respectively. The decrease in dry density and thermal conductivity is related to the content of GOS, which is composed of organic and porous fibers. The GOS seems promising for improving the thermo-mechanical characteristics of CEB and which can also be used as reinforcement in CEBS.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Moch Agus Choiron ◽  
Siti Azizah ◽  
Nafisah Arina Hidayati

Arjowilangun Village is a post-TKI village. People choose to become sheep farmers with less capital than being cattle farmers. Based on the previous discussion, waste management is required to ensure the sustainability of environment in Arjowilangun Village. Processing sheep and agricultural waste program is held by Doktor Mengabdi team. Farmers can learn how to make Bokashi from waste. The method used is composting aerobic or anaerobic starters for composting organic material. A decomposer as collection of several good microbes from fungi work to control pathogenic microbes assists the fermentation process. Based on the results of the pre-test and post-test during the training, it can be showed that understanding of the breeders' potential of the environment is increased.


2011 ◽  
Vol 49 (4) ◽  
pp. 342-347
Author(s):  
Kyoungwan Park ◽  
Seungman An ◽  
Taekyung Yim ◽  
Kyungsu Lee ◽  
Jeongho Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document