Freeze-thaw vacuum treatment of landfill sludge: Mechanism of uneven frost heaving and dewatering performance

Author(s):  
Yajun Wu ◽  
Yaoyi Wang ◽  
Xudong Zhang ◽  
Yunda Zhang ◽  
Xingtao Zhang ◽  
...  
Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 236
Author(s):  
Xuebang Huang ◽  
Zizhao Zhang ◽  
Ruihua Hao ◽  
Zezhou Guo

Particle size grading impacts salt-frost heaving and dissolution collapse events of salinized soil on northwestern China’s arid and cold region highways. However, the influencing mechanisms remain unclear and the impact of varying particle size grading needs further investigation. Hence, this study focused on these effects and the number of freeze–thaw cycles on the characteristic changes in highway salinized soil in arid and cold regions. Three soil columns with different gradations were prepared to explore the gradation and the number of freeze–thaw cycle affects on salinized soil’s salt-frost heaving and dissolution collapse characteristics. The multi-functional physical simulation platform conducted multiple freeze–thaw cyclic tests in the laboratory. Test results confirmed significant and conclusive effects of gradation and the number of freeze–thaw cycles on salinized soil’s salt-frost heaving and dissolution collapse behaviors. Poorly graded salinized soil with high coarse particle content caused repeated freeze and thaw engineering hazards, significantly affecting salinized soil’s displacement and deformation behaviors during freezing. Contrarily, an increased range of fine particles more easily involved the characteristics of salinized soil during thawing. Therefore, the fourth freeze–thaw cycle was a crucial time node. After four freeze–thaw cycles, the displacement and deformation of original salinized soil and B-grade salinized soil samples (poorly graded with high fine particle content) tended to be stable. In contrast, the displacement and deformation of A-grade salinized soil samples (poorly graded with high coarse particle content) increased the growth rate. The present research results contribute to in-depth knowledge of the effects of gradation and freeze–thaw cycles on the characteristics of salinized soil in northwestern China, providing excellent referenced data support for the prevention and control of highway salinized soil failures and other engineering projects in arid and cold regions of northwest China.


2012 ◽  
Vol 256-259 ◽  
pp. 422-426
Author(s):  
Hua Zhong ◽  
Xiu Fen Wang ◽  
Bin Zhang

Frost heaving damage of water conservancy project is widespread. In order to research the failure problems of hydraulic soil slope in dark seasonal frozen soil region, laboratory model test is carried out combined with field test section practical situation, which is the prototype of this model test. It is researched that the rule of frost heave parameters variation and the damage of soil slope during freeze-thaw cycling. That offers theoretical basis and reference for construction of water conservancy project, which will mitigate the effect and damage of freeze-thaw on hydraulic soil slope stability.


2011 ◽  
Vol 255-260 ◽  
pp. 1171-1175 ◽  
Author(s):  
Han Bing Liu ◽  
Jing Wang ◽  
Chun Li Wu ◽  
Kai Feng

Three kinds of subgrade soils with different plasticity index are selected from seasonally frozen soil region. Frost heaving ratio of volume and height was performed on the samples exposed to 0 to 8 times closed-system freeze-thaw cycles. The results show that concerning the same kind of soil, the frost heaving ratio increases with the number of freeze-thaw cycles; Frost heaving ratio increases with plasticity index under the same number of freeze-thaw cycles. Multiple nonlinear fitting is adopted for test data. The relationship between frost heaving ratio and plasticity index, freeze-thaw cycles is obtained and shows a good correlation. The relation can provide useful reference for subgrade design and construction in seasonally frozen soil region.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 414
Author(s):  
Jiancun Fu ◽  
Aiqin Shen

In cold regions, many types of structural damages are caused by the frost heaving of asphalt pavements. Hence, it is important to quantitatively determine the frost-heaving effect of asphalt pavement using a mechanical method to control frost-heaving damage. In this study, first, the internal voids of the asphalt mixture were regarded as a single void, and the water phase transition generating the freezing water in the voids was simulated using a simplified hollow sphere model to create a uniform internal pressure. Second, the prediction equation of the equivalent linear expansion coefficient was proposed by taking the phase transition of water in the saturated asphalt mixture voids into account. A step function was used during the phase transition of water to determine the sudden change in the equivalent linear expansion coefficient, heat capacity, density, and thermal conductivity. Finally, the typical cooling conditions were simulated with the water phase transition and the nonwater phase transition. The experimental results showed that the proposed model could accurately simulate the effect of frost heaving. Higher stress and strain were generated on the surface and in the interior of the pavement, and the positions of maximum stress and strain occurred on the pavement surface under the frost-heaving conditions. The compressive strength of the asphalt mixture in a uniaxial compression test is about 4.5–6 MPa with a single freeze–thaw cycle. Furthermore, when frost heaving occurs on the asphalt pavement between 5.8 and 6.5 MPa, the numerical simulation method can be used to calculate the internal stress of the structure, which found that the compressive stress under the frost-heaving condition was the same magnitude as the compressive strength under the freeze–thaw testing condition.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yu Wang ◽  
Tao Sun ◽  
Haonan Yang ◽  
Jinfeng Lin ◽  
Hao Liu

This work is aimed at investigating the structural deterioration and the frost heaving force evolution characteristics of flawed rocks using a self-developed frost heaving force (FHF) measurement system. Three kinds of preflawed rocks with different flaw geometry parameters were used to conduct the FHF measurement tests. The testing results reveal five distinguished stages from the frost heaving force evolution curve; they are the inoculation stage, explosive stage, decline to steady stage, recovery stage, and sudden drop stage. In addition, a secondary frost heaving phenomenon is found, and the secondary peak value is lower than the initial peak value. Moreover, the FHF decreases with increasing the F-T cycle number, and its decreasing rate becomes faster at a high F-T cycle. The frost heaving force is affected not only by flaw geometry but also by the lithology. For low-pore hard rock, damage propagates quickly after the occurrence of freeze-thaw damage. It is suggested that the mesoscopic structure of rock affects the water migration and water-ice phase transformation, and rock can be fractured by FHF in the preexisting flaws.


2011 ◽  
Vol 250-253 ◽  
pp. 3029-3034
Author(s):  
Hua Zhong ◽  
Bin Zhang ◽  
En Liang Wang

Elastocoast revetments frost heave adaptability model test was carried out. Conclusions: (1) Elastocoast revetments can increase heat resistance and decrease the energy transfer. So the frozen depth and amount of frost heaving could be reduced. (2) This structure has deformation characteristics with temperature, and has a deformation at the test beginning. (3) The freezing rate under revetments is slow and the water supply is sufficient, because of which the amount of frost heaving will occur at one third of side slopes of canal, and the bottom of canal take the second place. (4) Consolidation settlement occurred after freeze-thaw cycling. And the revetments have a trend of becoming gentle slope. It indicates that Elastocoast revetments can commendably adapt to frost heave deformation. (5) The freeze-thaw durability is influenced by water content and the dosage of Elastocoast. The capability to resisting freeze-thaw denudation is better with the water content reduce and the material dosage increase.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Zhen-Chao Teng ◽  
Xiao-Yan Liu ◽  
Yu Liu ◽  
Yu-Xiang Zhao ◽  
Kai-Qi Liu ◽  
...  

Abstract In this study, outdoor freeze-thaw cyclic tests on the Q345 steel pipeline portion were conducted to analyze the buried oil pipeline stress evolution in a seasonally frozen soil area, namely, the Mohe–Daqing portion of China–Russia crude oil pipeline. The results obtained show that under the freeze-thaw cycle, the variation trend of soil temperature around the pipeline exhibited a hysteresis pattern, which was similar to that of atmospheric temperatures. The soil frost heaving force was shown to drop with depth, and its value at the pipe top was higher than that at the pipe bottom. With the number of freeze-thaw cycles, the frost heaving force of the soil first increased and finally stabilized, while the principal stress of the pipeline increased gradually, and its extreme value tended to be stable after 7–8 cycles, which was consistent with the “ratchet effect” theory. The above findings made it possible to elaborate on a more efficient freeze-thaw cyclic test setup for clarifying the mechanism of frozen soil/pipeline interactions.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hongyan Liu ◽  
Xiaochen Zhang ◽  
Xidong Yan

The freeze-thaw cycles will cause continuous damage to the rock, which is much related to the microcrack length, rock permeability, and frost heaving pressure. However, the failure mechanism of the rock under compression after freeze-thaw cycles is not very clear; therefore, it is studied with the damage theory here. First of all, according to the hydraulic pressure theory, the relationship between the frost heaving pressure and the microcrack propagation length in one single microcrack is established based on the elastoplastic mechanics and fracture theory. Second, by assuming the total strain of the rock under compression is comprised of the initial damage strain, elastic strain, additional damage strain, and plastic damage strain, a constitutive model for a rock based on the deformation and propagation of the microcrack under compression after freeze-thaw cycles is established. Finally, the proposed model is verified with the test result. In all, the proposed model can perfectly reflect the deterioration of the rock mechanical behavior under compression after the freeze-thaw cycles.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Jiabing Zhang ◽  
Xiaohu Zhang ◽  
Helin Fu ◽  
Yimin Wu ◽  
Zhen Huang ◽  
...  

Frost damage is a frequent occurrence in cold regions and can threaten the normal use and structural stability of tunnel engineering projects. To accurately determine the frost heaving force and effectively evaluate the frost damage in cold-region tunnels, an analytical solution for the frost heaving force considering the freeze-thaw (F-T) damage and transversely isotropic characteristics of surrounding rock is presented based on complex variable theory and the power series method. The calculation results indicate that the frost heaving force acts on the lining considering that the transversely isotropic characteristics of surrounding rock are significantly greater than those when assuming the surrounding rock is homogeneous isotropic media. This demonstrates that the transversely isotropic characteristics of surrounding rock have a considerable impact on the frost heaving force and should be considered. The frost heaving force continuously increases as the bedding angle increases from 0° to 90°, and the maximum frost heaving force in the Guanjiao tunnel (the rock mass bedding angle is 30°) of the Xining-Geermu Railway in China is approximately 1.04 MPa. In addition, the influence of F-T cycles on the frost heaving force in cold-region tunnels is investigated based on the analytical solution of the frost heaving force proposed in this paper. The frost heaving force acting on the lining decreases with an increasing number of F-T cycles due to the deterioration of the mechanical parameters of the surrounding rock.


Sign in / Sign up

Export Citation Format

Share Document