Correlation Analysis on Frost Heaving Ratio of Subgrade Soil and Plasticity Index under Freeze-Thaw Cycles

2011 ◽  
Vol 255-260 ◽  
pp. 1171-1175 ◽  
Author(s):  
Han Bing Liu ◽  
Jing Wang ◽  
Chun Li Wu ◽  
Kai Feng

Three kinds of subgrade soils with different plasticity index are selected from seasonally frozen soil region. Frost heaving ratio of volume and height was performed on the samples exposed to 0 to 8 times closed-system freeze-thaw cycles. The results show that concerning the same kind of soil, the frost heaving ratio increases with the number of freeze-thaw cycles; Frost heaving ratio increases with plasticity index under the same number of freeze-thaw cycles. Multiple nonlinear fitting is adopted for test data. The relationship between frost heaving ratio and plasticity index, freeze-thaw cycles is obtained and shows a good correlation. The relation can provide useful reference for subgrade design and construction in seasonally frozen soil region.

2012 ◽  
Vol 256-259 ◽  
pp. 43-47
Author(s):  
Jing Wang ◽  
Xiao Long Qu ◽  
Chun Li Wu ◽  
Yi Ming Xiang

Three different plasticity index subgrade soils are selected from seasonal frozen soil area. Triaxial compression test under different confining pressures are executed on the samples exposed to 0 to 7 times closed-system freeze-thaw cycles. The conclusion gotten is that to the same kind of soil under the same freeze-thaw cycles, the shear strength increases with confining pressure; Shear strength with the same confining pressure decreases with the number of freeze-thaw cycles; With the same confining pressure and the same freeze-thaw cycles, shear strength increases with the plasticity index. Exponential function is adopted for multiple nonlinear fitting on the test results. The relationship between shear strength and confining pressure, plasticity index, freeze-thaw cycles is obtained and shows a good correlation.


2013 ◽  
Vol 442 ◽  
pp. 342-345 ◽  
Author(s):  
Qiao Ling Wu ◽  
Yong Sheng ◽  
Feng Xie

Frost-heave and thaw-settlement of roadbed soil in highway will influence directly the durability, safe traffic flow and construction & maintenance costs in high-cold areas, therefore, recognizing and analysing the common embankment technologies of highway roadbed in high-cold areas accurately is significant to the effective controlling of project invest and the highway construction with limited funds in minority areas. The relations of Moisture Content and the freeze-thaw performances of roadbed fillers, subgrade soil were got respectively by experiments, and the results shows: Moisture Content has larger influence on the frost-heave and thaw-settlement performance of the soil. During the embankment of roadbed, the Moisture Content of fillers should be controlled nearby the optimum Moisture Content. The frost-heave and thaw-settlement occurs mainly in the subgrade soil, controlling the Moisture Content of subgrade soil is very important to improve the up-limit of frozen-soil, keep the stability of frozen-soil, control the thaw-settlement of roadbed and get rid of the roadbed diseases. CLC: U416.1 Document code: B


2012 ◽  
Vol 256-259 ◽  
pp. 422-426
Author(s):  
Hua Zhong ◽  
Xiu Fen Wang ◽  
Bin Zhang

Frost heaving damage of water conservancy project is widespread. In order to research the failure problems of hydraulic soil slope in dark seasonal frozen soil region, laboratory model test is carried out combined with field test section practical situation, which is the prototype of this model test. It is researched that the rule of frost heave parameters variation and the damage of soil slope during freeze-thaw cycling. That offers theoretical basis and reference for construction of water conservancy project, which will mitigate the effect and damage of freeze-thaw on hydraulic soil slope stability.


Author(s):  
Jean-Pascal Bilodeau ◽  
Mbayang Kandji ◽  
Mai Lan Nguyen

Over the past decades, the use of fast and reliable measurement techniques of soil mechanical properties has gained popularity. The lightweight deflectometer (LWD) is among the tools developed that can allow one to determine the elastic modulus of soil. Viscosity response components in pavement or soil typically induce phase shifts between stress and strain peaks, which can be translated to phase angle. Subgrade soil may exhibit varying response types depending on its nature and characteristics. Using large laboratory subgrade samples, an experiment was designed to measure the elastic modulus and phase angle with an LWD in different stress and humidity conditions. A model associating the elastic modulus inferred from LWD tests with parameters describing stress, water content and soil properties was proposed. This model is fundamentally inferred from the relationship between elastic modulus and phase shift, and was used to assess the relative contribution of varying conditions on soil stiffness.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Zhen-Chao Teng ◽  
Xiao-Yan Liu ◽  
Yu Liu ◽  
Yu-Xiang Zhao ◽  
Kai-Qi Liu ◽  
...  

Abstract In this study, outdoor freeze-thaw cyclic tests on the Q345 steel pipeline portion were conducted to analyze the buried oil pipeline stress evolution in a seasonally frozen soil area, namely, the Mohe–Daqing portion of China–Russia crude oil pipeline. The results obtained show that under the freeze-thaw cycle, the variation trend of soil temperature around the pipeline exhibited a hysteresis pattern, which was similar to that of atmospheric temperatures. The soil frost heaving force was shown to drop with depth, and its value at the pipe top was higher than that at the pipe bottom. With the number of freeze-thaw cycles, the frost heaving force of the soil first increased and finally stabilized, while the principal stress of the pipeline increased gradually, and its extreme value tended to be stable after 7–8 cycles, which was consistent with the “ratchet effect” theory. The above findings made it possible to elaborate on a more efficient freeze-thaw cyclic test setup for clarifying the mechanism of frozen soil/pipeline interactions.


2020 ◽  
Vol 12 (3) ◽  
pp. 1264 ◽  
Author(s):  
Hanbing Liu ◽  
Xiang Lyu ◽  
Jing Wang ◽  
Xin He ◽  
Yunlong Zhang

Permafrost and seasonal permafrost are widely distributed in China and all over the world. The failure of soil is mainly shear failure, and the strength of soil mainly refers to the shear strength. The two most important parameters of shear strength are cohesion and angle of internal friction. In order to ensure the sustainability of road construction in seasonal permafrost area, the microstructure of subgrade soil was observed and analyzed. First, three subgrade soils with different plasticity indices were prepared for triaxial test and scanning electron microscope (SEM). Then, these specimens underwent freezing–thawing (FT) cycles and were obtained shear strength parameters by triaxial shear test. Next, the microstructure images of soil were obtained by SEM, and the microstructure parameters of soil were extracted by image processing software. Finally, the correlation method was used to analyze the dependence between the shear strength parameters and the microstructure parameters. Results revealed that subgrade soils with a higher plasticity index had higher cohesion and lower angle of internal friction. In addition, with the increase of the number of FT cycles, the diameter and number of soil particles and pores tend to increase, while the roundness, fractal dimension and directional probabilistic entropy of particles decreased. With the increase of the plasticity index, the particle and pore diameter decreased, but the particle and pore number increased. Besides, particle roundness had the greatest influence on the cohesion and angle of internal friction of shear strength parameters.


2021 ◽  
Author(s):  
Fang Wang

In seasonal frozen soil area, the engineering problems caused by the excessive moisture content of the subgrade soil are widespread. In view of this phenomenon, author proposes to employ a new type of research and development of the seepage drainage geogrid (SDG) to cool and drain the soil. Through indoor model test, after two freeze-thaw cycles, the experimental comparison of the size and laying method of various SDG was carried out. The test result shows that the model with a natural grit layer has the most drainage effect. While, the model contains two layers of interconnected grilles has the best cooling effect. The indoor model test is simulated by accurate numerical simulation. The simulation results are compared with the indoor test results. The fitting results of the two results are very high, which provides theoretical support and data guarantee for the application of seepage drainage grille to strengthen the roadbed in the cold road.


2014 ◽  
Vol 505-506 ◽  
pp. 219-222
Author(s):  
Qiao Ling Wu ◽  
Yong Sheng ◽  
Feng Xie

Frost-heave and thaw-settlement of roadbed soil in highway will influence directly the durability, safe traffic flow and construction & maintenance costs in high-cold areas, therefore, recognizing and analysing the common embankment technologies of highway roadbed in high-cold areas accurately is significant to the effective controlling of project invest and the highway construction with limited funds in minority areas. The relations of Moisture Content and the freeze-thaw performances of roadbed fillers, subgrade soil were got respectively by experiments, and the results shows: Moisture Content has larger influence on the frost-heave and thaw-settlement performance of the soil. During the embankment of roadbed, the Moisture Content of fillers should be controlled nearby the optimum Moisture Content. The frost-heave and thaw-settlement occurs mainly in the subgrade soil, controlling the Moisture Content of subgrade soil is very important to improve the up-limit of frozen-soil, keep the stability of frozen-soil, control the thaw-settlement of roadbed and get rid of the roadbed diseases.


Sign in / Sign up

Export Citation Format

Share Document