A mixed-mode model for partitioning phase transformations

2007 ◽  
Vol 57 (12) ◽  
pp. 1085-1088 ◽  
Author(s):  
C. Bos ◽  
J. Sietsma
2004 ◽  
Vol 52 (14) ◽  
pp. 4143-4152 ◽  
Author(s):  
Jilt Sietsma ◽  
Sybrand van der Zwaag

2011 ◽  
Vol 172-174 ◽  
pp. 561-566 ◽  
Author(s):  
Hao Chen ◽  
Sybrand van der Zwaag

The original mixed-mode model is reformulated by considering the soft impingement effect and applying a general polynomial method of dealing with the concentration gradient in front of the interface. Comparison with the numerical solution shows that the reformulated mixed-mode model is more precise than the original model. The effect of soft impingement on the kinetics of partitioning phase transformation depends on both the growth mode and the degree of super-saturation.


2008 ◽  
Vol 43 (11) ◽  
pp. 3744-3749 ◽  
Author(s):  
Richard M. Huizenga ◽  
Cornelis Bos ◽  
Jilt Sietsma

1999 ◽  
Vol 586 ◽  
Author(s):  
R. C. Pond ◽  
P. Shang ◽  
T. T. Cheng ◽  
M. Aindow

ABSTRACTThe topological theory of interfacial defects and the associated flux analysis are reviewed. It is shown that the shears and diffusive fluxes associated with the motion of disconnections can be determined directly from their crystallographic characteristics, and that the effects of changes in chemical composition, interfacial misfit and ordering can be incorporated into the analysis. The special conditions are identified for which there is conservation of atomic sites during the motion of disconnections. It is shown that, under these circumstances, disconnection motion may result in mixed-mode displacive-diffusive transformations whereby diffusion is required for the transformation to proceed but the interfaces exhibit crystallographic characteristics which one would normally associate with a martensitic transformation. It is shown that the growth of γ lamellae in TiAl-based alloys is an example of such a mixed-mode transformation.


2012 ◽  
Vol 706-709 ◽  
pp. 1367-1372
Author(s):  
Hao Chen ◽  
Benoît Appolaire ◽  
Sybrand van der Zwaag

A cyclic phase transformation concept has been proposed to investigate the growthkinetics of the austenite (γ) to ferrite (α ) and vice versa in Fe-Mn-C and Fe-C alloys. In the caseof cyclic partial transformations in Fe-Mn-C alloys, two new and special stages are observed:a stagnant stage in which the degree of transformation does not vary while the temperaturechanges and an inverse phase transformation stage, during which the phase transformationproceeds in a direction contradictory to the temperature change. The local equilibrium (LE)and paraequilibrium (PE) are both applied to analyzing the new observations. The stagnantstage was found to be caused by the Mn partitioning, while the inverse phase transformationstage was due to equilibrium conditions not being reached at the transition temperatures.A mixed-mode model is applied to simulating the cyclic phase transformation in Fe-C alloy,and it is found that the cyclic phase transformation concept is a very promising method forinvestigating the interface mobility.


2006 ◽  
Vol 97 (4) ◽  
pp. 356-361 ◽  
Author(s):  
Jilt Sietsma ◽  
M. Giuseppina Mecozzi ◽  
Stefan M. C. van Bohemen ◽  
Sybrand van der Zwaag

Author(s):  
P. G. Kotula ◽  
D. D. Erickson ◽  
C. B. Carter

High-resolution field-emission-gun scanning electron microscopy (FESEM) has recently emerged as an extremely powerful method for characterizing the micro- or nanostructure of materials. The development of high efficiency backscattered-electron detectors has increased the resolution attainable with backscattered-electrons to almost that attainable with secondary-electrons. This increased resolution allows backscattered-electron imaging to be utilized to study materials once possible only by TEM. In addition to providing quantitative information, such as critical dimensions, SEM is more statistically representative. That is, the amount of material that can be sampled with SEM for a given measurement is many orders of magnitude greater than that with TEM.In the present work, a Hitachi S-900 FESEM (operating at 5kV) equipped with a high-resolution backscattered electron detector, has been used to study the α-Fe2O3 enhanced or seeded solid-state phase transformations of sol-gel alumina and solid-state reactions in the NiO/α-Al2O3 system. In both cases, a thin-film cross-section approach has been developed to facilitate the investigation. Specifically, the FESEM allows transformed- or reaction-layer thicknesses along interfaces that are millimeters in length to be measured with a resolution of better than 10nm.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
P. Moine ◽  
G. M. Michal ◽  
R. Sinclair

Premartensitic effects in near equiatomic TiNi have been pointed out by several authors(1-5). These include anomalous contrast in electron microscopy images (mottling, striations, etc. ),diffraction effects(diffuse streaks, extra reflections, etc.), a resistivity peak above Ms (temperature at which a perceptible amount of martensite is formed without applied stress). However the structural changes occuring in this temperature range are not well understood. The purpose of this study is to clarify these phenomena.


Sign in / Sign up

Export Citation Format

Share Document