Single-step aging treatment for a precipitation-strengthened Ni-based alloy and its influence on high-temperature mechanical behavior

2019 ◽  
Vol 162 ◽  
pp. 416-420 ◽  
Author(s):  
Kinga A. Unocic ◽  
Dongwon Shin ◽  
Xiahan Sang ◽  
Ercan Cakmak ◽  
Peter F. Tortorelli
Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


1994 ◽  
Author(s):  
Terry R. Barnett ◽  
H. S. Starrett

2000 ◽  
Author(s):  
Ronald Gibala ◽  
Amit K. Ghosh ◽  
David J. Srolovitz ◽  
John W. Holmes ◽  
Noboru Kikuchi

2014 ◽  
Vol 1039 ◽  
pp. 107-111
Author(s):  
Yang Chen ◽  
Gui Qin Li ◽  
Bin Ruan ◽  
Xiao Yuan ◽  
Hong Bo Li

The mechanical behavior of plastic material is dramatically sensitive to temperature. An method is proposed to predict the mechanical behavior of plastics for cars, ranging from low-temperature low temperature ≤-40°C to high temperature ≥80°C. It dominates the behavior of plastic material based on improved constitutive model in which the parameters adjusted by a series of tests under different temperatures. The method is validated with test and establishes the basis for research and development of plastic parts for automobile as well.


2021 ◽  
Vol 904 ◽  
pp. 117-123
Author(s):  
Yi Cui ◽  
Yun Fei Zhang ◽  
Yan Guang Han ◽  
Da Lv

The effect of high temperature annealing on microstructure evolution of Ni-24Fe-14Cr-8Mo alloy was investigated through Optical Microscopy (OM), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Rockwell Hardness Testing Machine. Three kinds of grain growth patterns were found at different annealing temperatures due to carbides precipitation and dissolution. After a combination of high temperature annealing and aging treatment, the hardness versus time curves performed a parabolic pattern. The highest hardness was achieved under 1070°C/60 minutes treatment, and the desirable annealing time should be 60 minutes to 90 minutes.


Author(s):  
Haiyang Fan ◽  
Yahui Liu ◽  
Shoufeng Yang

Ti–6Al–2Sn–4Zr–2Mo (Ti-6242), a near-[Formula: see text] titanium alloy explicitly designed for high-temperature applications, consists of a martensitic structure after selective laser melting (SLM). However, martensite is thermally unstable and thus adverse to the long-term service at high temperatures. Hence, understanding martensite decomposition is a high priority for seeking post-heat treatment for SLMed Ti-6242. Besides, compared to the room-temperature titanium alloys like Ti–6Al–4V, aging treatment is indispensable to high-temperature near-[Formula: see text] titanium alloys so that their microstructures and mechanical properties are pre-stabilized before working at elevated temperatures. Therefore, the aging response of the material is another concern of this study. To elaborate the two concerns, SLMed Ti-6242 was first isothermally annealed at 650[Formula: see text]C and then water-quenched to room temperature, followed by standard aging at 595[Formula: see text]C. The microstructure analysis revealed a temperature-dependent martensite decomposition, which proceeded sluggishly at [Formula: see text]C despite a long duration but rapidly transformed into lamellar [Formula: see text] above the martensite transition zone (770[Formula: see text]C). As heating to [Formula: see text]C), it produced a coarse microstructure containing new martensites formed in water quenching. The subsequent mechanical testing indicated that SLM-built Ti-6242 is excellent in terms of both room- and high-temperature tensile properties, with around 1400 MPa (UTS)[Formula: see text]5% elongation and 1150 MPa (UTS)[Formula: see text]10% elongation, respectively. However, the combination of water quenching and aging embrittled the as-built material severely.


Carbon ◽  
2019 ◽  
Vol 142 ◽  
pp. 291-299 ◽  
Author(s):  
Sanjit Bhowmick ◽  
Sehmus Ozden ◽  
Rafael A. Bizão ◽  
Leonardo Dantas Machado ◽  
S.A. Syed Asif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document