Achieving high ductility in a selectively laser melted commercial pure-titanium via in-situ grain refinement

2021 ◽  
Vol 191 ◽  
pp. 155-160
Author(s):  
Jingqi Zhang ◽  
Yingang Liu ◽  
Mohamad Bayat ◽  
Qiyang Tan ◽  
Yu Yin ◽  
...  
2014 ◽  
Vol 937 ◽  
pp. 162-167 ◽  
Author(s):  
Xiao Mei He ◽  
Shan Shan Zhu ◽  
Cong Hui Zhang

Equal Channel Angular Pressing (ECAP) and Surface Mechanical Attrition (SMAT) are the two Severe Plastic Deformation (SPD) processes that have been used to process ultrafine grained (UFG) materials. These two kinds of processes have been used to refine the grain size of coarse-grained commercial pure titanium (CP-Ti). The development of microstructure during equal channel angular pressing (ECAP) and surface mechanical attrition (SMAT) of commercial pure titanium (CP-Ti) is investigated to establish the mechanisms of grain refinement. Based on the various experimental results and analysis, it has been found that the high-strain-rate and many direction loading is conducive to the formation of nanograins and also the grains with less than 100 nm cannot be obtained by the single equal channel angular pressing (ECAP).


Author(s):  
Qian Wang ◽  
Shiying Wang ◽  
Patrick Moll ◽  
Auriane Mandrelli ◽  
Jean-Sébastien Lecomte ◽  
...  

Author(s):  
B. B. Rath ◽  
J. E. O'Neal ◽  
R. J. Lederich

Addition of small amounts of erbium has a profound effect on recrystallization and grain growth in titanium. Erbium, because of its negligible solubility in titanium, precipitates in the titanium matrix as a finely dispersed second phase. The presence of this phase, depending on its average size, distribution, and volume fraction in titanium, strongly inhibits the migration of grain boundaries during recrystallization and grain growth, and thus produces ultimate grains of sub-micrometer dimensions. A systematic investigation has been conducted to study the isothermal grain growth in electrolytically pure titanium and titanium-erbium alloys (Er concentration ranging from 0-0.3 at.%) over the temperature range of 450 to 850°C by electron microscopy.


Author(s):  
Lina Bai ◽  
Chunxiang Cui ◽  
Jianjun Zhang ◽  
Lichen Zhao ◽  
Guixing Zheng ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 595
Author(s):  
Tatsuhiko Aizawa ◽  
Tomoaki Yoshino ◽  
Yohei Suzuki ◽  
Tomomi Shiratori

A bare AISI420J2 punch often suffers from severe adhesion of metallic titanium as well as titanium oxide debris particles in dry, cold forging of biomedical titanium alloys. This punch was plasma-carburized at 673 K for 14.4 ks to harden it up to 1200 HV on average and to achieve carbon supersaturation in the carburized layer. This plasma-carburized punch was employed in the cold, dry forging of a pure titanium wire into a flat plate while reducing the thickness by 70%. The contact interface width approached the forged workpiece width with increasing the reduction ratio. This smaller bulging deformation reveals that the workpiece is upset by homogeneous plastic flow with a lower friction coefficient. This low-friction and anti-galling forging process was sustained by an in situ solid lubrication mechanism. Unbound free carbon was isolated from the carbon-supersaturated AISI420J2 matrix and deposited as a thin tribofilm to protect the contact interface from mass transfer of metallic titanium.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2536
Author(s):  
Tatsuhiko Aizawa ◽  
Tomoaki Yoshino ◽  
Yohei Suzuki ◽  
Tomomi Shiratori

A tool steel type SKD11 punch was plasma carburized at 673 K for 14.4 ks at 70 Pa to make carbon supersaturation. This carburized SKD11 punch was employed for upsetting the pure titanium wire with the diameter of 1.00 mm up to the reduction of thickness by 70% in a single shot. Its contact interface to titanium work was analyzed to describe the anti-galling behavior in this forging. Little trace of titanium proved that the galling process was suppressed by the in situ solid lubrication. The isolated free carbon agglomerates are wrought as a solid lubricant to sustain the galling-free forging process. This anti-galling upsetting reduced the residual strains in the forged wires. A long titanium wire with a length of 45 mm was incrementally upset to yield the titanium ribbon with a thickness of 0.3 mm, the width of 2.3 mm, and the length of 50 mm. The grain size of original pure titanium was much reduced to 2 μm on average. A micro-pillared microtexture was imprinted onto this forged titanium ribbon.


Sign in / Sign up

Export Citation Format

Share Document